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by
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Abstract

Dynamic obstacle avoidance is an important, ubiquitous, and often challenging prob-
lem for autonomous mobile robots. This thesis presents a new method to guarantee
collision avoidance with respect to moving obstacles that have constrained dynamics
but move unpredictably. Velocity Obstacles have been widely used to plan trajectories
that avoid collisions with obstacles under the assumption that the path of the objects
are either known or can be accurately predicted ahead of time. However, for real
systems, this predicted path will typically only be accurate over short time-horizons.
To achieve safety over longer time periods, the method introduced here instead con-
siders the set of all reachable points by an obstacle assuming that the dynamics fit
the unicycle model, which has known constant forward speed and a maximum turn
rate (sometimes called the Dubins car model).

This thesis extends the Velocity Obstacle formulation by using reachability sets
in place of a single “known” trajectory to find matching constraints in velocity space,
called Velocity Obstacle Sets. The Velocity Obstacle Set for each obstacle is equivalent
to the union of all velocity obstacles corresponding to any dynamically feasible future
trajectory, given the obstacle’s current state. This region remains bounded as the
time horizon is increased to infinity, and by choosing control inputs that lie outside of
these Velocity Obstacle Sets, it is guaranteed that the host agent can always actively
avoid collisions with the obstacles, even without knowing their exact future paths.
It thus follows that, subject to certain initial conditions, an iterative planner under
these constraints guarantees safety for all time.

Finally, the an iterative planner is repeatedly tested and analyzed in simulation
under various conditions. If the time horizon is set to some finite value, the guaranteed
collision avoidance is lost, but the planned trajectories generally become more direct.
This effect of varying this time scale also depends on the presence of static obstacles
in the environment and on the dynamic limitations of the host robot.

Thesis Supervisor: Jonathan P. How
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

Dynamic obstacle avoidance is an important, ubiquitous, and often challenging prob-

lem for autonomous mobile robots. The characteristics of specific scenarios call for

different sets of assumptions and different collision avoidance algorithms.

In situations with long time-scales and significant uncertainty about the future,

accurately generating an entire plan for the host robot at once may not be feasible.

Instead, on-line motion planners can be used to create or modify the trajectory as

new information becomes available. The complexity of the problem often prohibits

these approaches from being able to guarantee finding a path to the goal. Instead,

these planners iteratively extend the trajectory along the most promising segments,

while ideally maintaining safety with respect to the obstacles in the environment.

Safety guarantees for such planners are most commonly achieved by defining safe

states and restricting the planner to work only with trajectories composed of such

states. Safe states are those that do not violate the imposed collision constraints and

can transition into another safe state. For example, in structured environments in

which the other vehicles practice reasonable collision avoidance, coming to a complete

stop and staying stationary can be considered reaching an invariant safe state (which

can be propagated indefinitely), so any state that can make this transition would be

deemed safe [1, 2]. However, if the dynamic obstacles exhibit unpredictable behavior,
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as often is the case in many real-world environments, it becomes much more difficult

to define sufficient conditions that allow safe states to be propagated forward in time.

The host vehicle may be struck by other vehicles if it stays at rest, or it may become

surrounded by multiple other vehicles such that collision becomes inevitable.

Other popular collision avoidance approaches include being able to accurately

anticipate imminent collisions such that, with an understanding of the dynamical

capabilities of the host robot, timely evasive actions may be taken. However, with

multiple unpredictable robots, forecasting situations like becoming from which colli-

sions are not immediate but eventually inevitable (like becoming surrounded) is not

straight-forward, and formulations like the collision-cone approach [3] cannot guar-

antee proper handling of these problematic cases.

This thesis presents a method for finding velocity-space constraints for an on-line

planner that guarantees infinite horizon safety in an environment with multi-

ple obstacles that have constrained dynamics but can move unpredictably,

a scenario that has so far been difficult for techniques in the existing literature. This

safety guarantee is achieved by combining the reachability set as a function of time

for objects subject to these dynamics [4] with the velocity obstacle concept [5].

1.2 Problem Statement

The goal is to safely navigate a single host robot through a 2D environment with

multiple dynamic obstacles. Each obstacle moves with unicycle dynamics (sometimes

referred to as Dubins dynamics); it has a fixed forward speed v, and it can turn at

up to some maximum rate ω:

~̇x = v[cos(θ) sin(θ)]
T ,

|θ̇| ≤ ω,

v̇ = 0.
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Equivalently, the obstacle can be described as having a minimum turning radius

ρ = v/ω. The host robot may be subject to arbitrary dynamic constraints. All the

vehicles are discs, and a collision occurs between if the distance between two vehicles

is less than collision radius r. Given the values of these parameters and the ability to

measure exactly the current location and orientation of all dynamic obstacles, the host

robot must travel in such a way that it will never come in contact with an obstacle,

without any additional information. The host robot is given a series of way-points

that it attempts to reach, if it can do so without jeopardizing its safety.

1.3 Previous Work

An expansive collection of path planning algorithms has been built as varied tech-

niques geared towards a gamut of problem statements have been designed, modified,

and combined. [6–11] This section will briefly cover the existing approaches that are

most closely related to the planning problem posed in this thesis. To the best of our

knowledge, there is no solution in the current literature that gives infinite horizon

safety in the presence of unpredictable obstacles.

1.3.1 Velocity Obstacle Based Formulations

Using the original formulation of the velocity obstacle [5], one can find single veloc-

ity trajectories that are guaranteed collision-free, given the exact trajectory of the

obstacles for some time-scale. This time-scale could be infinite, but that would un-

realistically require that all obstacle trajectories be known perfectly for all time. For

some applications in predictable environments [12–14], this is an effective means of

collision avoidance, but it is unsuitable for guaranteeing long term safety with re-

spect to unpredictable obstacles. Nonetheless, this work introduces the idea of using

velocity-space constraints to concisely represent collision avoidance conditions, which

plays a central role in the algorithm derived in this thesis and is reviewed in detail in

Section 2.2.

Various extensions and modifications to the original velocity-obstacle approach

13



have been made. Instead of assuming a known infinite trajectory, in [15], the motion

of the obstacles are predicted for a finite duration with an associated uncertainty.

Velocity obstacles are computed after growing the obstacles by the uncertainty, and

then used to plan safe finite segments. Since the time-scale is finite, there is no

guarantee that a trajectory can be continued safely when a re-plan is necessary.

Further, according to the authors of Ref. [15], growing obstacles by the uncertainty

often results in all reachable velocities creating potential collisions. Various metrics

can be used to select a velocity with relatively low likelihood of collision, but this

would still be unacceptable if safety is to be guaranteed.

In [16], the authors appeal to a safe state argument. They use the dynamics of

the host robot and of each obstacle to calculate an optimal time horizon, such that

inevitable collision states [17] are avoided by heeding the bounds of the corresponding

finite-time velocity obstacle. Firstly, this method still requires the trajectories of the

dynamic obstacles be known at least up to some finite horizon, but this information

is not always available in the most general settings. Further, it is argued that “any

velocity that does not penetrate this [finite, optimal time horizon] velocity obstacle

should allow sufficient time under the given control authority to avoid collision.” But

this in fact fails to account for the interaction of the constraints imposed by multiple

obstacles. The extremal trajectories that are computed to dodge collisions with an

obstacle may interfere with neighboring obstacles, so a velocity that respects the

optimal horizon velocity obstacle of one object may in fact be forced to collide with

a different obstacle. Thus, this method does not guarantee infinite horizon safety.

1.3.2 Various other formulations

In [3], “collision cones” are defined to predict collisions between objects of arbitrary

size and shape, if the objects maintain their current velocities. For rigid bodies, it

is then possible to compute the necessary adjustments to the velocity of the host

robot such that anticipated collision is averted. Based on the dynamic capabilities of

the robot, avoidance maneuvers can be computed such that it is always possible to

remain the collision cone. However, much like the issue with [16] discussed earlier,
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the feasibility of these maneuvers is guaranteed only for single obstacle case; the

possibility of multiple obstacles imposing constraints that cannot be simultaneously

satisfied is not explicitly accounted for. This problem arising from multiple obstacles

cannot be solved by defining a single entity composed of the collective configurations

of all the obstacles, since their independent motions would violate the rigid body

assumption.

Other work includes [18], in which safe, analytic trajectories are found given robot

and obstacle dynamic constraints, but only on a finite horizon with a given endpoints

and without conditions for propagating safety. Thus, this algorithm cannot practically

handle large planning problems with long time horizons.

In [19–22], guaranteed safety is achieved for multi-agent systems in which all the

agents use the same collision avoidance policy with feasible invariant sets. These

frameworks rely on having coordinated authority over all agents in the environment,

and therefore cannot handle external unpredictable agents.

1.4 Summary of Contributions

This thesis develops a framework for guaranteeing infinite horizon collision avoidance

that does not rely on any prediction of the obstacles’ motion. This is done by map-

ping the reachable sets of the dynamic obstacles into velocity space to form Velocity

Obstacle Sets which are then used to define safe, invariant single-velocity trajectories.

The safety guarantee is analytically derived and proved, and the resulting iterative

planner is thoroughly demonstrated in various forms under different simulated condi-

tions. It is also shown that alternative finite horizon velocity obstacle set formulations

may be implemented as reactive planners that lack long-term safety guarantees but

may be better suited for certain tasks, depending on the characteristics of the host

vehicle.
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1.5 Thesis Overview

The remainder of this thesis is organized as follows: Chapter 2 reviews and builds

upon key concepts from existing literature that are critical to the new velocity ob-

stacle set algorithm. These topics included reachability sets, velocity obstacles, and

invariant safe states. Chapter 3 defines and derives velocity obstacle sets. A method

is presented for efficiently computing a concise representation of constraints as a

function of the current obstacle states. Safety guarantees on the infinite horizon are

then discussed in Chapter 4. Chapter 5 describes how the velocity obstacle sets can

be used in iterative planners. The behaviors of a basic infinite-horizon planner are

demonstrated in simulation, and the use of infinite horizon planners and finite horizon

planners of various lengths are then thoroughly compared for a variety of scenarios.
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Chapter 2

Background

2.1 Reachability and Collision Regions

This section will find the boundaries of regions in physical space that may result in a

collision with a given obstacle, as a function of time. For example, if the location of

a circular obstacle is known for some future time, the collision region at that time is

a circle centered on the known obstacle location, with radius equal to the sum of the

obstacle and host vehicle radii. If the center of the host vehicle is within this region

at that time, there will be contact with the given obstacle. These regions of physical

space to avoid will be converted into velocity space constraints in Chapter 3.

2.1.1 Reachability

If it is not possible to know exactly the location of the obstacle as a function of time,

the reachable set can be used instead to generate the collision region. This is the

union of all possible locations of the obstacle at some given time. By avoiding the

entire reachable set of the obstacle, the host robot avoids any possible contact.

In [4], the authors find “the set of all possible positions” for a particle that “moves

in the plane with constant speed and subject to an upper bound on the curvature

of its path.” These dynamics match the standard unicycle model used here, and

the results can be directly applied to find the reachable set of a given obstacle as a
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Table 2.1: Summary of important terms and parameters used.
symbol Section Meaning
V O 2.2 Velocity obstacle: constraint in velocity space given tra-

jectory of obstacle.
V OS(t0, tf ) 3.1 Velocity obstacle set: constraint in velocity space given

reachability of obstacle. Defined over a time window as⋃
SVR(t) ∀t ∈ [t0, tf ].

V OS(t0,∞) 3.3.2 Infinite horizon VOS. Defined for all future times.
τ 4 Time horizon of VOS, τ = tf − t0.
v 1.2 Constant forward speed of moving obstacles.
ω 1.2 Maximum turn rate of moving obstacles.
ρ 1.2 Minimum turning radius of obstacle, ρ = v

ω
.

r 1.2 Collision radius. Sum of host vehicle radius and obstacle
radius.

CR(t) 2.1.2 Collision region: reachable set grown by collision radius,
i.e., set of all points within r of reachable set.

SCR(t) 2.1.2 Simplified collision region: expanded version of CR(t) for
simplicity; contains all points that could contact obstacle.

S1,2,3,4,5(θ, t) 2.1.2 Arcs that parametrically define respective segments of
boundary of SCR(t).

SVR(t) 3.1 Simplified velocity region: velocity space constraint as-
sociated with SCR(t); SVR(t) = 1

t
SCR(t).

C(t) 3.1 Boundary of SVR(t).
Q1,2,3,4,5(θ, t) 3.1 Arcs that parametrically define respective segments of

C(t).
n̂|P (θ) 3.1 Normal vector to C(t) at point P.

BVOS(t0, tf ) 3.1 Boundary of V OS(t0, tf )
δt 5.2.1 Discrete time-step at which dynamics are propagated in

simulation.
∆T 5.2.1 Interval at which re-planning occurs.
∆θ 5.2.2 Maximum instantaneous change of robot heading allowed

at each re-plan.
ωmax 5.2.2 Equivalent turn-rate constraint of host vehicle repre-

sented by imposing limits on ∆θ
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Figure 2-1: Example reachable set for v = 1m/s, ρ = 10m, t = 20s. The reachable region is
bound by segments of the 4 curves A1, A2, B1, B2. Corresponding trajectories to points on
these curves are shown in dashed lines.

function of time. Without loss of generality, consider an obstacle P that starts at the

origin with heading (clockwise angle measured from the y axis) θ = 0 at time t = 0.

P moves with constant speed v and maximal turn rate ω:

~̇x|P = v[sin(θ) cos(θ)]
T ,

|θ̇| ≤ ω,

v̇ = 0.

Equivalently, P has a minimal turning radius ρ = v/ω.

It is shown in [4] that the reachable region at time t is bounded by 4 parametric
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curves (Figure 2-1). A1,2 are given by

A1(θ, t) =

−ρ(1− cos θ) + (vt+ ρθ) sin θ

−ρ sin θ + (vt+ ρθ) cos θ

 (2.1)

A2(θ, t) =

ρ(1− cos θ) + (vt− ρθ) sin θ

ρ sin θ + (vt− ρθ) cos θ

 , (2.2)

with −wt ≤ θ ≤ 0 for A1 and 0 ≤ θ ≤ wt for A2. The points on these boundaries

correspond to the minimal-time Dubins paths [23] of maximal-rate turn followed by

driving straight (black and blue dashed lines in Figure 2-1). Similarly, B1,2 are

B1(ψ, t) =

−ρ(2 cosψ − 1− cos(2ψ − wt))

ρ(−2 sinψ − sin(−2ψ − wt))

 (2.3)

B2(ψ, t) =

ρ(2 cosψ − 1− cos(2ψ − wt))

ρ(2 sinψ − sin(2ψ − wt))

 , (2.4)

with −ψ ? ≤ ψ ≤ 0 for B1 and 0 ≤ ψ ≤ ψ ? for B2. ψ ? is found by solving

2 cosψ ? − 1− cos(2ψ ? − wt) = 0.

The points on these boundaries correspond to paths of maximal-rate turn in one

direction followed by maximal-rate turn in the other direction (red and magenta

dashed lines in Figure 2-1).

Given the initial position and orientation of a moving obstacle that follows the

described dynamics, its location at any given future time lies within these bounds.

2.1.2 Simplified Collision Region

Equations (2.1)–(2.4) describe the possible locations of the obstacle for a given time

t. This region is grown by the collision radius r to find the set of locations at which

the robot could be in contact with the obstacle at time t. For example, with a circular

robot of radius r1 and a circular obstacle of radius r2, r = r1 + r2. As long as the
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Figure 2-2: Example simplified collision region. The region from Figure 2-1 is grown by
the collision radius to produce CR(t), in light blue. CR(t) is then expanded using S5 into
SCR(t), in light yellow, for simplicity.

robot is outside of this grown collision region CR(t) (light blue in Figure 2-2) at time

t, there cannot be a collision with the obstacle at the specified instant in time.

To simplify the representation of the various segments bounding the collision re-

gion, segment A5 (dashed red line in Figure 2-2) is introduced to replace B1,2(ψ, t)

(dashed magenta line). This expands the original reachable set to produce a new

region that contains the original set. (See Section 2.1.3 for discussion of why this is

a safe simplification). Expanding this simplified reachable set by collision radius r

produces the simplified collision region (SCR), with boundaries S1,...,5. This region

is defined for each obstacle at a specific time, written SCRi(t), where i indexes the

obstacles.

Figure 2-2 shows that the boundary of the simplified collision region for a given

instant in time is a combination of up to 5 possible segments, S1,2,3,4(θ, t) and S5(t).
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Four of these segments are parameterized in θ, which is the direction of the normal

vector as measured from the y axis, ranging from −π to π. That is, at any point on

S1,2,3,4(θ, t), the normal unit vector n̂ is given by

n̂(θ) =

sin θ

cos θ

 . (2.5)

This equation is easily confirmed by checking that the normal vector is orthogonal to

the tangent:

n̂(θ) · ∂Sj
∂θ

= 0 j = 1, . . . , 4. (2.6)

S1,2(θ, t) (solid blue in Figure 2-2) are derived from A1,2(θ, t) by adding r to Equa-

tion 2.1 and Equation 2.2 along the outward (with respect to the interior of the

reachable set) normal. They are parametrically represented as

S1(θ, t) =

−ρ(1− cos θ) + (vt+ ρθ + r) sin θ

−ρ sin θ + (vt+ ρθ + r) cos θ

 , (2.7)

S2(θ, t) =

ρ(1− cos θ) + (vt− ρθ + r) sin θ

ρ sin θ + (vt− ρθ + r) cos θ

 , (2.8)

with respective domains

S1 : max(−wt,−π) ≤ θ ≤ 0, (2.9)

S2 : 0 ≤ θ ≤ min(wt, π). (2.10)

S3,4(θ, t) (solid green in Figure 2-2) are circular arcs of radius r that wrap around

the left and right bottom corners of the reachable set. The centers of these arcs are

found by substituting max(−π,−wt) and max(π,wt) into Equation 2.1 and Equa-

tion 2.2 respectively. If |wt| ≥ π, then it is clear that S1, S2, and S5 enclose the

simplified collision region. This is both geometrically intuitive (Figure 2-2) and rigor-

ously addressed (Section 2.1.3). When |wt| < π, the parametric expressions for these
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arcs are

S3(θ, t) =

−ρ(1− cos(ωt)) + r sin θ

ρ sin(ωt) + r cos θ

 , (2.11)

S4(θ, t) =

ρ(1− cos(ωt)) + r sin θ

ρ sin(ωt) + r cos θ

 , (2.12)

with respective domains

S3 : − π ≤ θ ≤ −ωt, (2.13)

S4 : ωt ≤ θ ≤ π. (2.14)

Note that for t > π/ω, S3,4 are no longer part of the boundary of SCRi(t).

Finally, S5(t) is the horizontal line segment joining the lowest points in S1,2,3,4(θ, t).

These are either S3(−π, t) and S4(π, t), or S1(−π, t) and S2(π, t), depending on which

pair of curves is defined for θ = ±π at time t. For this segment, the outward normal

unit vector is [0 − 1]T .

S1,2,3,4(θ, t) can be combined into a piecewise curve R(θ, t) for which θ ∈ [−π, π].

The region below R and above S5 defines the simplified collision region SCRi(t) for

obstacle i at any time t. For clarity, specific segments Si(θ, t) will be referred to

instead of R(θ, t) as a whole.

2.1.3 Validity of Using SCR(t) in Place of CR(t)

Guaranteed collision avoidance is maintained when replacing the collision region

CR(t) with SCR(t), if SCR(t) includes all of CR(t). Since S5(t) is the new lower

boundary of the region, this inclusion is true if no points on the original boundary

of CR(t) lie below S5(t). Equivalently, one must show that defining A5(t) to join

A1(−ωt, t) and A2(ωt, t) as the new lower boundary does not exclude points from

the original region, i.e., no points in the replaced boundary segments A{1,2}, B{1,2} lie
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below A5(t) (see figure 2-3). That is,

A{1,2},y(θ, t) ≥ A5,y(t) ∀|θ| > π (2.15)

and

B{1,2},y(ψ, t) ≥ A5,y(t) ∀|ψ| < ψ ?. (2.16)

Equation 2.15 is only a concern for ωt > π (because θ ≤ ωt), and within this

domain, A5,y(θ, t) = A2,y(π, t). Using the first and second derivatives of A2,y(θ, t) (see

Equation 2.2) with respect to t, it is easy to show that A2,y has local minimums at

θ = {π, 3π, . . .}. Equation 2.2 evaluated at these points yields

A2,y(θ, t) = −(vt− ρθ),

which increases with θ. Clearly, the global minimum occurs at θ = π. Hence, Equa-

tion 2.15 is satisfied.

Starting with Equation 2.4,

B2,y(ψ, t) = ρ(2 sinψ − sin(2ψ − ωt)),
dB2,y

dψ
= ρ(2 cosψ − 2 cos(2ψ − ωt))

= B2,x(ψ, t) + (1− cos(2ψ − ωt))

≥ B2,x(ψ, t).

From Section 3.2 in Ref. [4], B2,x(ψ, t) ≥ 0 for the entire domain of ψ. Therefore,

dB2,y

dψ
≥ 0 ∀ψ ∈ [0, ψ ?].

Hence, By is an increasing function of ψ, and since and A5,y(t) = B2,y(0, t), Equa-

tion 2.16 is satisfied.

Therefore, the modified reachability set is a valid over-bound of the exact reach-

ability set, so the corresponding collision region SCR(t) is a safe over-bound of the
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Figure 2-3: SCR(t = 50). SCR(t) defined using S5 includes all of the original exact collision
region if the dotted red line A5 lies below A1,2 as it curves inward (as time is extended)
and all parts of B1,2. The proof presented in Section 2.1.3 first shows that, even as t is
increased to infinity and the curves A1,2 are extended, while they periodically loop back
down towards A5, the low point of each pass is higher than the previous. It is then shown
B1,2 increase in y away from the endpoints that joins with A1,2, hence A5 also lies below
all of B1,2.

Figure 2-4: SCR(t = 120). As t is increased, the curves A1,2 continue indefinitely, but they
can be safely truncated using A5 since they lie completely above A5.
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Figure 2-5: Velocity Obstacle associated with a circular, stationary obstacle (red circle in
top frame). Should the host robot (blue point at the origin of the top frame) move from the
origin with any velocity that lies within the velocity obstacle (green cone in bottom frame),
it will eventually collide with the obstacle at some future time.

exact collision region CR(t).

2.2 Velocity Obstacles

This section review the conversion of constraints in physical space to constraints in

velocity space. The authors of [5] introduce the concept of velocity obstacles.

2.2.1 Basic Picture

Consider an obstacle of radius r at initial location ~x. Let the host robot be a point

mass starting at the origin. If the robot drives indefinitely in the direction of this

obstacle, it will collide with the obstacle at some future time. That is, if the angle

26



x
y

v
x

   
   

   
   

   
   

   
   

  v
y

v*

v*

Figure 2-6: Velocity Obstacle associated with a circular obstacle moving along a single-
velocity trajectory. Translating the original velocity obstacle by this relative velocity yields
the new velocity obstacle. Any velocity from within the green region will eventually result
in contact with the moving obstacle.

measured from the positive x axis of a single-direction trajectory lies between α(~x)±

arctan(r/|~x|), this trajectory will result in a collision. These angular bounds translate

directly into a cone in velocity space (green region in Figure 2-5) whose sides are

rays pointing along these critical angles and whose base extends out to infinity. A

velocity within these bounds (or, a velocity from within this region of velocity space)

will contact the obstacle if continued indefinitely, while all other velocities are safe,

as long as the velocity is never changed.

For an obstacle that moves with constant velocity v ?, the same results apply

as relative velocities (see Figure 2-6). That is, a collision will occur if and only if

the relative velocity between the host robot and the obstacle lies within the original
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velocity region [24]. Therefore, the original region in velocity space can be simply

translated by v ?, and this produces the linear velocity obstacle, which applies to

obstacles moving with constant velocities. It is also possible to compute the nonlinear

velocity obstacle for obstacles moving along arbitrary trajectories (See Figure 2-8);

the process is discussed in detail in [25].

2.2.2 Equivalent Interpretation

The following introduces an alternate derivation. The results of this approach are

identical to the more intuitive case from 2.2.1, but this process is more easily adapted

to compute velocity obstacle sets (Chapter 3) for unpredictable obstacles, which is

the main result of this thesis.

Given a set of coordinates X(t = τ) that must not be entered at time τ (collision

region of a physical obstacle at a given time), there is a corresponding set of velocities

V (t = τ) =
X(τ)

τ

found by simply dividing X by τ . If the vehicle were to start at the origin at t = 0

and take a linear, single-velocity trajectory using any of the velocities in the set

V (τ), it would end up at a coordinate inside set X at time τ . Any other single-

velocity trajectory would successfully stay clear of this constraint. This set V (t) of

velocities to avoid, associated with collisions occurring at a specific future time, is an

instantaneous velocity obstacle (blue circles in Figure 2-7 and red circles in 2-8).

For moving and stationary obstacles that exist for longer than a single time instant,

the host vehicle must jointly avoid all the collision regions at their matching time

instants, as given by the trajectory of the obstacle. The union of these resulting

constraints for each obstacle forms a 2D shape in velocity space. This defines the

velocity obstacle

V O(t0, tf ) =
⋃

V (t) ∀t ∈ [t0, tf ]
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Figure 2-7: Equivalent interpretation of the velocity obstacle for moving obstacle. Instanta-
neous locations (shades of red in top frame) of the obstacle are converted into velocity-space
regions (blue circles in bottom frame) by dividing by time. The union of these regions over
a time interval produce (a section of) the same velocity obstacle (green cone) described in
section 2.2.1. Note that t0 must be > 0.

where t0 > 0 and tf > t0 bound the time window of interest. Single-velocity trajecto-

ries using velocities from inside this velocity obstacle would intersect the constrained

regions at some time within the specified window. If the obstacle is moving with fixed

velocity over the duration of interest, this results in the linear velocity obstacle (see

Figure 2-7). Ref. [5] shows that the linear velocity obstacle is a truncated segment of

a cone that expands from the origin towards the moving object.

Where the truncation occurs is determined by the time window. It does not make

sense to define V (0), because contact with the obstacle at t = 0 is simply determined

by the initial conditions. As the lower time bound approaches 0, the open end of the
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cone tends towards infinity, as collisions in the very near future would entail driving

towards the obstacle at high speeds. When these speeds exceed dynamic capacities of

the host vehicle, there are effectively no longer of practical interest, and the velocity

obstacle can be truncated at some small initial time. As the upper time bound

approaches infinity, the sharp end of the cone converges to the obstacle’s terminal

velocity (see figure 2-7: as t increases, V (t) shrinks and tends towards the tip of the

V O cone).

Nonlinear velocity obstacles can be computed for objects that move in arbitrary

ways over the time window. Layering the velocity constraints generated at each time

instant produces a warped cone (see Figure 2-8), and the calculation and representa-

tion of this shape is discussed in Ref. [25]. Velocities outside of this region generate

safe, single-velocity trajectories; the safety of nonlinear or speed-varying robot trajec-

tories are explored in [26].

The standard approach for defining and using velocity obstacles in the existing

literature ([5, 15, 16, 24, 27]) requires a mapping that gives the location of the object

as a function of time over the specified window in order to produce the velocity

obstacle. This typically limits the horizon to accurately predictable time-scales and

requires any prediction error to be handled by growing the collision size. While

there has been extensive work in improving prediction of obstacle motion [28, 29],

this framework is nonetheless generally ill-suited for guaranteeing long term collision

avoidance. This thesis extends the velocity obstacle concept to scenarios in which the

predicted trajectory is unavailable.

2.3 Invariant Safe States

This section briefly reviews the concept of invariant safe states, which is often used to

prove extended collision avoidance. This material will be relevant to the guarantees

of collision avoidance (Chapter 4) and to properties of iterative planners (Chapter 5).

In extended horizon scenarios, it is often only possible to make detailed motion

plans into the near future without explicitly reaching a terminal goal state. The

30



Figure 2-8: The nonlinear velocity obstacle for an object moving along a known curved
trajectory. Note that the physical obstacle and its path are sketched and super-imposed
upon the velocity space coordinates. This image is only for visualization; these entities are
defined in physical space (x and y, as opposed to vx and vy), and have no actual meaning
in this frame. If the obstacle trajectory is assumed to continue indefinitely at some fixed
velocity, the tip of the nonlinear velocity obstacle terminates at the coordinate corresponding
to that velocity, and if the obstacle were to drive in circles, the tip of the nonlinear velocity
obstacle converges to the origin; this is the behavior of the host vehicle that collides with
the obstacle in the very distant future.

final goal may be far out of reach or the environment may be too dynamic, so a

short term plan is executed, bringing the robot closer to the goal with the intention

of regenerating more short-term plans in the future. Typically, it is fairly straight-

forward to avoid collisions within the planning horizon. However, it is often difficult

to account for issues that may become unavoidable farther in the future. That is, even

with the ability to re-create a new short-term plan before the horizon of the current

plan expires, decisions from the current plan, combined with the unpredictability

of the environment, may make it impossible to find a safe trajectory at the next

planning iteration. The momentum of the host vehicle may make an evasive maneuver

impossible, or the terminal position of the host robot may be in the path of a moving

obstacle.
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To cleanly handle such scenarios, many iterative path planners (such as the ones

in [1] and [2]), define invariant safe states. This is the set of host vehicle states such

that

• all safety (collision avoidance) constraints are satisfied,

• it is dynamically feasible to transition back into itself.

For example, in static environments, staying motionless without contacting a static

obstacle would be an invariant safe state. For autonomous vehicles driving in an

urban setting [1], the rules of the road make stopping in certain areas, like beside

a curb, invariant safe states. Such a state can be maintained indefinitely if need

be. This means that if a finite-horizon plan terminates in such a state, the plan can

be trivially extended for any amount of time with guaranteed collision avoidance.

Furthermore, any state that can transition into an invariant safe state can also be

deemed safe and considered a valid terminal condition for finite-trajectory plans.

Therefore, if an iterative planner is limited to choosing finite-horizon plans that

terminate in safe states, such a planner is guaranteed to avoid collisions for arbitrary

time scales. The existence of at least one feasible option every time a new plan is

computed is ensured, as the planner can always choose to transition into the invariant

safe state and stay there. However, nothing can be said about the existence of a

solution that brings the robot to the desired goal; enforcing this constraint may

in fact cause the planner to overlook potential trajectories to the goal in favor of

trajectories that cling in proximity to the invariant safe states. This issue must be

dealt with on a case to case basis, depending on the specific goals and challenges of

each application.

In relatively unstructured environments, it can be very challenging to define in-

variant safe states. The scenario at the core of this thesis involves multiple dynamic

obstacles whose trajectories are unpredictable, governed only by their known dynam-

ical limitations. The classic invariant safe states of bringing the host vehicle to a stop

at some location no longer apply, as it could still be possible for the host vehicle to

be struck by another vehicle. It will be shown that the velocity obstacle sets derived
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in Chapter 3 can be used to define invariant safe states, thereby allowing guaranteed

infinite horizon collision avoidance.

2.3.1 Inevitable Collision States

A popular variant approach to guaranteed safety uses Inevitable Collision States [17,

30]. Using the dynamics of the vehicle and the model of the environment, it is possible

to identify vehicle states from which any control input would lead to a collision. If

all such states can be exhaustively found, then the host vehicle need only avoid these

states to guarantee collision avoidance.

This is closely related to the use of invariant safe states: maintaining access to a

safe state guarantees safety; alternatively, never entering a restricted inevitable colli-

sion state achieves the same goal. Depending on the scenario, it may be more sensible

to satisfy one of these conditions instead of the other. If the inevitable collision states

are easily found, it is straightforward to simply check that the commanded input

does not immediately enter such a state. However, in the case of multiple obstacles,

inevitable collision states include surrounded, as well as soon-to-be surrounded, con-

figurations. Solving exactly for the collisions that lead to unavoidable collisions is a

very difficult problem whose solution may be more naturally expressed in terms of

invariant safe states.
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Chapter 3

Velocity Obstacle Set Definition

The objective of this work is to find conditions that guarantee collision avoidance,

even without exact knowledge of the obstacles’ future locations as functions of time.

This is achieved by mapping the collision regions of the reachable sets of the obstacles

(Section 2.1) into regions in velocity space and using the velocity obstacle concept

(Section 2.2) to produce a concise representation of velocities at which the host vehicle

can travel without ever intersecting the collision region of an obstacle for any time.

By keeping clear of the reachable sets of each obstacle, the host vehicle avoids any

possible collisions without explicitly anticipating trajectories for the obstacles.

As described in Section 1.2, the obstacles are assumed to follow unicycle dynamics:

they have a fixed forward speed v and a limited angular acceleration of |θ̇| ≤ ω, this

giving them a minimum turning radius of ρ = v
ω
. In addition to v and ω, the collision

radius parameter r and the current locations and headings of each obstacle are used

to calculate these velocity space constraints.

3.1 Definition

Given the speed and turn-rate constraint of any unicycle model obstacle, one can

compute an over-bound SCRi(t) of its dynamically feasible collision set as a function

of time (Section 2.1.2). At every instant in time, one can divide SCRi(t) by the

time to extract a corresponding region in velocity space, the simplified velocity region
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(SVR), expressed as

SVRi(t) =
SCRi(t)

t
(3.1)

for any t > 0. Any point mass (that starts at the origin) traveling with velocity inside

SVRi(t) will enter the collision region, whereas a point mass with a velocity outside

of this set will remain clear of SCRi(t).

The boundary Ci(t) of SVRi(t) consists of the segments

Q1,2,3,4(θ, t) =
1

t
S1,2,3,4(θ, t) (3.2)

Q5(t) =
1

t
S5(t), (3.3)

using Equation 2.7-Equation 2.14. Any input outside of this region in velocity space

will return a linear, single-speed trajectory that will be safe at the given instant. For

safety over a window of time, one needs to layer all the instantaneous constraints

together. The union of these constrained regions in velocity space is defined as the

velocity obstacle set (VOS) (Figures 3-1 and 3-2), which thus includes all of the single-

velocity trajectories that could possibly generate a collision within the time window.

For the ith obstacle,

VOSi(t0, tf ) =
⋃

SVRi(t) =
⋃ SCRi(t)

t
, ∀t ∈ [t0, tf ]. (3.4)

The VOS is a nonlinear velocity obstacle computed using the entire reachability

set of a dynamic object, instead of just a single estimated trajectory as in prior work

[25]. Velocities outside of the VOS give a linear trajectory that is guaranteed safe

with respect to all dynamically feasible trajectories of the obstacle for the duration

of the time window.

Equivalently, the VOS can be interpreted as the union of all the classic nonlinear,

single-trajectory velocity obstacles (see Figure 2-8 for the classic nonlinear velocity

obstacle) associated with each of the dynamically feasible obstacle trajectories, de-

fined over the same time window (see Figures 3-3 to 3-5). These two entities would
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Figure 3-1: Conceptual sketch of example velocity obstacle set (region in velocity space).
VOS(t0, tf ) is the union of SVR(t) for t ∈ [t0, tf ]. The boundary of each SVR(t) is C(t).
C(t) is composed of segments Q1,2,3,4(θ, t) and Q5(t). The boundary of VOS is BVOS. A
point P on the boundary has an associated normal vector n̂.
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Figure 3-2: Computed example velocity obstacle set with parameters x0 = 4, y0 = 4,
ρ = 6.063, r = 1.5, v = 1. C(t0) and C(tf ) are plotted thicker than C(t) for intermediate
times (Each C is plotted as its components Q1,2,3,4,5). These ”terminal regions” boundaries
C(t0) and C(tf ) along with candidate points (in blue and red) found on Q1,2,3,4,5(t) for
intermediate t ∈ (t0, tf ) make up the boundary of VOS(t0, tf ).

be exactly equivalent, as they both return the set of velocities that may put the robot

within contact distance of an obstacle location at some future time. The only dis-

tinction to be made is that, as the VOS is defined using the simplified region SCR,

the VOS is actually a superset of the union of all feasible velocity obstacles, i.e.,

⋃
V O|traj(t0, tf ) ⊂ V OS(t0, tf )

for all feasible trajectories. It will be shown in section 3.2.4 that the two are in fact

very nearly the same, and the simplification typically does not affect the final result

(they are in fact identical if the final boundary of the VOS does not contain elements

of Q5).
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Figure 3-3: Velocity obstacles for different possible trajectories of an obstacle with x0 = 4,
y0 = 0, ρ = 6.063, r = 1.5, v = 1. Jointly avoiding all possible velocity obstacles would
guarantee safety. Exhaustively simulating all these trajectories out to infinity is not a good
solution.

As discussed in the following sections, using the reachability sets as a function

of time is a tractable way to compute the VOS. On the other hand, it would not

be computationally feasible to arrive at the same theoretical result by simulating all

possible physical trajectories over an infinite time horizon, computing the associated

velocity obstacles, and then taking the union of the results (Figure 3-3). Ultimately,

the desired result is a representation of the boundary of the VOS.

3.2 Conditions for Boundary Points of the VOS

This section derives Algorithm 1 for finding the boundary BVOSi
(t0, tf ) of the region

VOSi(t0, tf ), where t0 > 0 and tf ≤ ∞ (See Section 3.3.2 for a detailed discussion

of these limits). All candidate points from the curves Ci(t) whose time derivatives
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Figure 3-4: Velocity Obstacle Set for the same conditions. This set is computed using
reachability. It is always contains the region in Figure 3-3 as a subset; in this case they are
identical if the region in Figure 3-3 were exhaustively defined.

are perpendicular to the normal vector are found. These points define the points of

tangency between SVRi(t) and SVRi(t+δt) (see Figure 3-1). The set of all points sat-

isfying this condition contains the boundary BVOSi
(t0, tf ), as summarized in Remark

1. A detailed explanation follows.

Every point P on BVOSi
(t0, tf ) must be a boundary point on at least one of the

underlying simplified velocity regions SVRi(t) for some t ∈ [t0, tf ] (Figure 3-1). This

follows trivially from the fact that P must be found in some SVRi(t) by definition

of VOSi in Equation 3.4, and that if P were on the interior instead of the boundary

Ci(t) of SVRi(t), some neighboring point of P would lie outside of BVOSi
|P .

With the exception of corners, every point P on the curve BVOSi
(t0, tf ) has a local

outward normal vector n̂|P . See Figure 3-7 for an example of a corner. Corners in

the boundary would have two different normals approaching from either side, and

the normal at that point is undefined. These intersections between local boundary

segments are dealt with at the last step in this algorithm, but the following conditions

applied locally to each segment and its normal are still valid as necessary conditions
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Figure 3-5: This is how the boundary of the VOS is found. Note that in this Figure (as
well as Figure 3-3), the physical trajectory is just a reference image.

of boundary points.

By definition of a boundary, there must not be any neighboring points inside

VOSi(t0, tf ) that reach farther out in the direction of n̂|P . This condition implies the

standard equation for the normal vector

n̂|P ·
∂

∂s
BVOSi

|P (s) = 0,

where s is any variable parameterizing the curve BVOSi
. BVOSi

(s± δs) gives relevant

candidate neighboring points of P within the set VOSi that must not be farther out

along n̂|P . Similarly, since P is found in some SVRi(t) which is in VOSi, one can also

write the necessary condition

n̂|P ·
∂

∂s
Ci|P (s) = 0 (3.5)

for any variable s for which Ci(s) – the boundary of SVRi – is continuously defined

such that Ci(s± δs) ∈ VOSi(t0, tf ).
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Ci is composed of the segments Q1,2,3,4(θ, t) and Q5(t) from Equation 3.2 - Equa-

tion 3.3, and the parametric expressions for these segments can each take the place

of Ci in Equation 3.5, yielding

n̂|P ·
∂

∂s
Qi,j|P (s) = 0, (3.6)

where i indexes the dynamic obstacle, and j ∈ {1, . . . , 5} as piece-wise segments of

Ci.

By choosing s = θ where θ is the parameter for the segments Q1,2,3,4(θ, t), Equa-

tion 2.6 is recovered (scaled by a factor of 1
t
)

n̂ · ∂Sj
∂θ

= 0 j = 1, . . . , 4, (Equation 2.6)

the solution of which is Equation 2.5:

n̂(θ) =

sin θ

cos θ

 . (Equation 2.5)

This means that, if P is found on some segment Q1,2,3,4(θ, t), then the normal vector n̂

associated with BVOSi
is the same normal vector associated with SCRi(t) and SVRi(t).

Similarly, Q5(t) could be generically parameterized by arc-length s, recovering the

normal vector

n̂|P,Q5(t) =

 0

−1

 . (3.7)

Intuitively, these results indicate that the normal vectors associated with the over-

all boundary BVOSi
(t0, tf ) at any point P must match with the normal vectors found

locally on the segments Qj(t) at P (see Figure 3-1). Otherwise, a point on Qj(t)

would lie outside the boundary BVOSi
(t0, tf ).

The expression for n̂|P can then be substituted into the necessary condition (Equa-
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tion 3.6 with the time parameter t substituted for s) to obtain

sin θ

cos θ

 · ∂
∂t
Qi,j|P (θ, t) = 0; j ∈ {1, . . . , 4} (3.8)

and 0

1

 · ∂
∂t
Qi,5|P (t) = 0 (3.9)

as necessary conditions for a point P to be on the boundary BVOSi
(t0, tf ), as long as

Qi,j(θ, t±δt) ∈ VOSi(t0, tf ). This latter statement is true for all t in the open interval

(t0, tf ). (At the endpoints t0 and tf themselves, these conditions need not hold; just

like how the global minimum of a function on a closed interval can be found on the

end of the interval without the needing the derivative to be 0 there.) This condition

drives how the boundary is found.

Remark 1. Any point P in BVOSi
(t0, tf ) must either satisfy Equation 3.8 or Equa-

tion 3.9, or lie on the curves Ci(t0) or Ci(tf ). Graphically, Equation 3.8 and Equa-

tion 3.9 describe points that are local tangent points between SVRi(t) and SVRi(t+δt)

(Figure 3-1). Finding all such points results in a larger set that contains all possible

points in BVOSi
(t0, tf ). This set also includes local extrema that are not necessarily

global boundary points; see Figure 3-6. Algorithm 1 is the result of these conditions.

3.2.1 Solving the Necessary Conditions

This section show in detail how Equation 3.8 and Equation 3.9 are solved. Without

loss of generality, assume the host robot is located at the origin, and the obstacle is

located at (x0, y0), pointing along the positive y axis (so that the heading is zero).

A different initial condition can be first rotated to match this heading, and the cor-

responding (x0, y0) is easily computed, and the final result is rotated back to the

original frame (lines 1 and 20 in Algorithm 1).
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Algorithm 1: Solving for the boundary of VOS (See figure 3-6)

Input: obstaclei : {x0, y0, θ0, v, ρ}, t0, tf
Output: BVOSi

1 rotate (x0, y0) by −θ0 (vehicle heading);
2 {candidate segments} ← ∅;
// add C(t0) and C(tf ) to consideration

3 for t ∈ {t0, tf} do
4 find C(t) using (3.2),(3.3);
5 add C(t) to {candidate segments} ;

// add candidate points on Q1,2

6 {critical angles} = solve conditions in (3.13),(3.12);
7 for θ ? ∈ {critical angles} do
8 t1 = max( θ

?

w
, t0);

// points make linear segment between Q1,2(θ∗, t1) and Q1,2(θ∗, tf )
9 find segments using (3.10);

10 add segment to {candidate segments};

// add candidate points on Q3,4

11 {local segments} ← ∅;
12 for t ∈ [t0,min(π

ω
, tf )] do // discretize t

13 {points} = solve conditions in (3.17),(3.16) using Equation 3.24;
14 append {points} onto {local segments};
15 add {local segments} to {candidate segments} ;

// add candidate points on Q5

16 th = solve condition in (3.19);
// endpoints of Q5(th) = Q{2,1}or{4,3}(±π, th)

17 find Q5(th) using (3.10),(3.15);
18 add Q5(th) to {candidate segments};

// candidate segments now includes all possible boundary points

19 boundary = combine {candidate segments};
20 rotate boundary by θ0;
21 return boundary;
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Figure 3-6: Example candidate points in BVOS(t0, tf ), using parameters x0 = 4, y0 = −4,
ρ = 6.063, r = 1.5, v = 1. Various instances of C(t) are outlined in green and magenta.
Candidate boundary points drawn in red, blue, and black. The physical obstacle is sketched
for reference, but note that the rest of the plot is in velocity space, and the physical obstacle
cannot actually be expressed in these coordinates and needs to be on separate axes, as done
technically correctly in Figures 2-5, 2-6, and 2-7.

i) Points on Q1,2(θ, t):

This corresponds to lines 6–9 in Algorithm 1. First consider points on the segments

Q1,2(θ, t) that may satisfy Equation 3.8. From Equation 3.2 and Equation 2.8,

Q2(θ, t) =
1

t

x0 + ρ(1− cos θ) + (vt− ρθ + r) sin θ

y0 + ρ sin θ + (vt− ρθ + r) cos θ

 . (3.10)

The domain for Q2(θ, t) is

Q2(θ, t) : t ∈ [t0, tf ], θ ∈ [0,min(ωt, π)], (3.11)
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Figure 3-7: Final boundary of VOS from example in figure 3-6. The same parameters of
x0 = 4, y0 = −4, ρ = 6.063, r = 1.5, v = 1 are used. C(t0 = ε) and C(tf →∞) are outlined
in red and magenta. BVOS drawn in blue. The maximum host vehicle velocity drawn in
black; C(t0 = ε) lies outside of this circle.

which comes directly from Equation 2.10. Taking the derivative with respect to time

and substituting into Equation 3.8 yields

∂Q2(θ, t)

∂t
= − 1

t2

(x0 + ρ) + ρ cos θ + (r − ρθ) sin θ

y0 − ρ sin θ + (r − ρθ) cos θ

 ,
0 =

∂

∂t
Q2(θ, t) ·

sin θ

cos θ

 ,
0 = − 1

t2
((x0 + ρ) sin θ + y0 cos θ + r − ρθ) . (3.12)

For any t and θ in the specified domain that satisfies Equation 3.12, Q2(θ, t) is a

potential boundary point in BVOS(t0, tf ).
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Identical steps lead to the necessary condition

− 1

t2
((x0 − ρ) sin θ + y0 cos θ + r + ρθ) = 0 (3.13)

for points of Q1(θ, t), defined in the domain

Q1(θ, t) : t ∈ [t0, tf ], θ ∈ [max(−ωt,−π), 0].

For any combination of t and θ within the domain of Q1 that satisfies Equation 3.13,

Q1(θ, t) is a potential boundary point in BVOS(t0, tf ).

Note that, excluding t =∞ and assuming t 6= 0, Equation 3.12 and Equation 3.13

can be reduced to functions of θ alone. Each has at most two values of θ ? that satisfy

the equation within its domain, and these values are easily found numerically. Candi-

date boundary points are given by Qj(θ
?, t) for t ∈ [t1, tf ], where t1 = max(θ ?/ω, t0),

since for any t < θ ?/ω, θ ? would not be in be domain of θ (see Equation 3.11).

For a solved value of θ ?, the locus of all candidate boundary points is a linear

segment between Qj(θ
?, t1) and Qj(θ

?, tf ) for j = {1, 2} (red lines in Figure 3-6).

This is because Qj(θ
?, t) Equation 3.10 is a linear function of 1

t
, which is well defined

for t 6= 0.

Physically, if the dynamic obstacle were turn to at maximum rate ω to θ ? and

then continue driving directly in this direction, in order to avoid collision, the host

robot would need to choose a path that is deflected away from the obstacle with the

widest clearance, compared to what it would have to done to avoid any other feasible

obstacle trajectory.

ii) Points on Q3,4(θ, t): This corresponds to lines 11–15 in Algorithm 1.

Next, all possible boundary points on Q3,4(θ, t) are found. Like segments S3,4(θ, t)

(Equation 2.11-Equation 2.12), the domains of segments Q3,4(θ, t) are

Q3(θ, t) : t ∈ [t0, tf ], θ ∈ [−π,−ωt],

Q4(θ, t) : t ∈ [t0, tf ], θ ∈ [π, ωt]. (3.14)
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Due to the limits on the domain of θ, when solving for BVOS(t0, tf ), one only needs

to consider points in Q3,4 from times in the range t ∈ [t0,min(π/w, tf )]. As seen in

Figure 3-6, as t increases, Q3,4 eventually disappear.

From Equation 3.2 and Equation 2.12,

Q4(θ, t) =
1

t

x0 + ρ(1− cos(ωt)) + r sin θ

y0 + ρ sin(ωt) + r cos θ

 , (3.15)

∂Q4

∂t
=
−1

t2

(x0 + ρ)− ρ cos(ωt)− ρωt sin(ωt) + r sin θ

y0 + ρ sin(ωt)− ρωt cos(ωt) + r cos θ

 .
Given any value of t from within the domain, the necessary condition from Equa-

tion 3.8 requires

∂

∂t
Q4(θ, t) ·

sin θ

cos θ

 = 0, (3.16)

which can be solved numerically for θ. Alternatively, see Section 3.2.3 for an equiva-

lent analytic geometric solution to these conditions. For a given t, Equation 3.16 has

between zero and two valid solutions for θ ∈ [0, 2π) (this is clear from the geomet-

ric interpretation). Any of these solutions that fall within the domain θ ∈ [ωt, π] is

considered a valid candidate boundary point in BVOS(t0, tf ).

Similarly, for Q3(θ, t), using Equation 2.11

∂Q3

∂t
= − 1

t2

(x0 + ρ) + ρ cos(ωt) + ρωt sin(ωt) + r sin θ

y0 + ρ sin(ωt)− ρωt cos(ωt) + r cos θ

 .
Given a value of t, the necessary condition

∂

∂t
Q3(θ, t) ·

sin θ

cos θ

 = 0 (3.17)

can be solved numerically for θ, and solutions that are in the domain θ ∈ [−π, ωt] are

considered valid candidate boundary points.
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While the sets of all possible boundary points from segments Q1 and Q2 define

linear segments given by just their endpoints, the set of candidate points (The dotted

blue segments in Figure 3-7) found in Q3 and Q4 in general cannot be represented

analytically in a more compact form. Note that for Q1,2, one could first solve inde-

pendently for θ ?, while here, the variables cannot be neatly decoupled. Instead, one

must discretize the finite interval [t0,min(π/ω, tf )] at some resolution, and at every

discrete value of t, points satisfying Equation 3.16 or Equation 3.17 are found. Solu-

tions points from sequential instances in time are matched together to form candidate

boundary segments. The resolution of these segments depend on how finely the time

interval is discretized. Note that the duration of this interval is upper-bounded by

π/ω, the time it takes the obstacle to turn around, thus capping the computational

demands of this process.

iii) Points on Q5(t): This corresponds to lines 16 - 18 in Algorithm 1.

Finally, points on Q5(t) for any t ∈ [t0, tf ] that may be part of BVOS(t0, tf ) need

to be found. Again, the definitive necessary condition is

n̂ · ∂Q5

∂t
= 0, (3.18)

where n̂ =
[
0 −1

]T
(from Equation 3.7) and Q5(t) is the horizontal line segment

joining Q1(−π, t) and Q2(π, t), or joining Q3(−π, t) and Q4(π, t), depending on which

set of domains of θ contain ±π at the given t. Since Q5(t) is a straight, horizontal

segment, this condition holds true when the two endpoints satisfy their respective

conditions of being normal to n̂|P (θ) =
[
sin θ cos θ

]T
=
[
0 −1

]T
.

When ωt ≥ π, Q5(t) joins Q2,1(±π, t), and Equation 3.18 is satisfied if ±π are

solutions to Equation 3.12 and Equation 3.13. When this is the case, it is easy to

show that all the points in Q5(t) for t ≥ π/ω line up with the linear segment between

Q2,1(θ ?, t1) and Q2,1(θ ?, tf ) described earlier (where θ ? = ±π). These points do not

need to be accounted for a second time.
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When ωt ≤ π, Q5(t) joins Q4,3(±π, t), and Equation 3.18 yields

y0 + ρ sin(ωth)− ρωth cos(ωth)− r = 0 (3.19)

This can be numerically solved for th. Using Q3(−π, th) and Q4(π, th), Q5(th) (the

black line in Figure 3-6) is then explicitly found and added to the set of candidate

boundary points.

See section 3.2.4 for discussion about implications of using Q5 to form the simpli-

fied velocity region in place of the exact boundary.

iv) Combining the Results: (line 19 in Algorithm 1; see Figures 3-6 and 3-7)

As described in Remark 1, considered together with the curves Ci(t0) and Ci(tf ),

the solutions to Equation 3.12, Equation 3.13, Equation 3.16, Equation 3.17 and

Equation 3.19 in their specified domains exhaustively describe all points that could

lie on the boundary BVOSi
(t0, tf ). These pieces of the boundary are found as seg-

ments and points, and they need to be sorted into a continuous curve. After all the

components are found, the arguments t and θ for each piece are used to identify its

neighboring components, thus allowing the segments and points to be correctly sorted

into a single curve.

This loop may intersect itself, in which case the segments on the interior are

not parts of the actual boundary BVOS. This phenomenon is perfectly consistent,

since the conditions that were solved for were simply necessary, but not sufficient,

conditions for points on BVOS. Intersections on this loop of candidate boundary

points form corners in the final boundary and are easily detected by checking each

segment in the loop in order. It is easy to identify the segments that are on the

interior, and these segments are truncated out of the solution. The remainder of the

continuous curve is the perimeter BVOS.

3.2.2 Computational Complexity

For each obstacle, Equation 3.12, Equation 3.13, and Equation 3.19 each need to be

solved only once, as a function of the single variable θ. Equation 3.16 and Equa-
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tion 3.17 need to be repeatedly solved as functions of θ at discretized instances of t,

but the range of t is bounded as t ∈ [t0,min(π/w, tf )]. For each t, the process out-

lined in 3.2.3 gives a straight-forward and efficient formula for finding the solutions

P (θ, t). Ci(t0) and Ci(tf ) are directly found using Equation 3.10 and Equation 3.15

(plus similar equations for Q1,3). All of these computations are very light and can

easily be done on-line. Calculating and representing the conditions for each obstacle

that guarantee collision avoidance is thus a simple process that can be implemented

in real-time at each planning iteration. How a planner then uses and checks these

constraints is a separate problem.

3.2.3 Geometrical Interpretation

ii) Points on Q3,4(θ, t): Consider a point (in velocity space) P on the curve Q3

P (t, θ) = Q3(t, θ)

for some t and θ such that P is on the boundary BVOS. The solution for P on

Q4 is derived the exact same way after flipping two signs in the x coordinate (See

Equation 3.15). By definition Equation 3.2,

P (t, θ) = Q3(t, θ) =
1

t
S3(t, θ),

where S3(t, θ) is a point on the circular arc of radius r centered on the bottom corner

of the reachability set (See Figure 2-1 and Equation 2.11):

S3(t, θ) =

x0 + ρ(1− cos(ωt))

y0 + ρ sin(ωt)

+ r

sin(θ)

cos(θ)

 .
Thus, the partial derivative ∂P (t,θ)

∂t
can be re-written as

∂P (t, θ)

∂t
=

∂

∂t

1

t

x0 + ρ(1− cos(ωt))

y0 + ρ sin(ωt)

+
∂

∂t

(r
t
n̂|P
)
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=
∂~q

∂t
+
∂

∂t

(r
t
n̂|P
)

= ~c+~b,

where ~q, ~c and ~b are defined as

~q(t) =
1

t

x0 + ρ(1− cos(ωt))

y0 + ρ sin(ωt)

 , (3.20)

~c(t) =
∂q

∂t
= − 1

t2

x0 + ρ

y0

+ ρ

− cos(ωt)

sin(ωt)

+ ρωt

sin(ωt)

cos(ωt)

 , (3.21)

~b(t, θ) =
∂

∂t

(
1

t
(r n̂|P )

)
= − r

t2
n̂|P , ‖~b(t)‖ =

r

t2
(3.22)

(see Figures 3-8 and 3-9 for geometric representation of these vectors). Note that the

directionality of ~b depends on θ (through n̂|P ), whereas the magnitude is purely a

function of t. As derived earlier (Equation 3.8), the necessary condition for P to be

a boundary point is

∂P (t, θ)

∂t
·

sin(θ)

cos(θ)

 = 0,

i.e., the vector ∂P (t,θ)
∂t

must be perpendicular to the normal vector n̂|P , which is parallel

to ~b:

∂P (t, θ)

∂t
= ~c+~b ⊥ n̂|P ‖ ~b.

Hence, the vectors ∂P (t,θ)
∂t

, ~c, ~b form a right triangle with hypotenuse ~c (See Figure

3-8), and an angle α between legs ~c and ~b given by

α(t) = arccos

(
‖~b(t)‖
‖~c(t)‖

)
. (3.23)

Thus, given t, it is computationally trivial to evaluate ~q, ~c, ~b, and α using Equa-

tion 3.20 to Equation 3.23. With ~q, ~c, and α (and the parameter r), it is simple to
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dP
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R t = rt

R tdt 

α

P
2
(t)

Figure 3-8: How to find candidate points P on Q3,4 geometrically. Given t, evaluate q, ‖b‖,
and c; solve for α; then reconstruct P (and second solution P2) using q and α. See Figure
3-9 to see how q fits into the overall picture.

solve for point P using

β = arctan

(
cy
cx

)
+ α

P = ~v +
r

t

cos(β)

sin(β)

 . (3.24)

This yields an analytic process for finding points P (t, θ) = Q3(t, θ) that satisfy the

conditions in Equation 3.16 and Equation 3.17, such that they are potentially on the

boundary BVOS. As described in Section 3.2.1, the time interval [t0,
π
ω

] needs to be
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Figure 3-9: Candidate boundary points on Q3,4. See Figure 3-10 for context of this detail.
8 instances of SVR(t) are plotted for times between t0 = 3, tf = 20, with the first and last
instances thickened. The boundary of each SVR consists of Q1,2 in magenta, and Q3,4 in
green, with Q3 on the left and Q4 on the right. The straight horizontal green segment is Q5.
Note that Q3,4 are circular arcs centered on q. The candidate points P found are plotted
in blue. The discretization of time to find these points P is finer than the discretization
for the SVRs shown. q(t) is plotted as a red dot for each SVR. In this particular example,
note how there are valid solutions on Q3 up to roughly t = 10 (halfway between t0 and tf ),
and there are valid solutions on Q4 up to roughly t = 5. The process outlined here finds 2
points at each time instance (P and P2 in Figure 3-8), but in this example, one of the two
at every instance lies outside the domain of θ for Q3,4 and is discarded (not plotted). These
discarded points would have been found on extensions to the circular arcs Q3,4 that would
be on the interior of each SVR(t), and hence not relevant as candidate boundary points.
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Figure 3-10: Candidate boundary points for x0 = −4, y0 = 4, ρ = 6.063, r = 1.5, v = 1, the
same situation as the detail shown in figure 3-9. Note that in this case all candidate points
are in fact on the boundary.

discretized, and candidate points P (t) can be found using Equation 3.24 for each

discrete value of t.

Note that in Equation 3.23, if ‖~b(t)‖ < ‖~c(t)‖ there are two values of α and hence

distinct two candidate points P (t); if = ‖~b(t)‖ = ‖~c(t)‖ there is one solution for P (t);

and if ‖~b(t)‖ > ‖~c(t)‖ there are no valid candidates. The corresponding argument θ

of each point P obtained through Equation 3.24 still needs to lie within the domain

described in Equation 3.14 to be considered a valid candidate point (See Figure 3-9).

3.2.4 Effect of simplifying collision region

If the VOS were defined as exactly the velocities that could contact the reachable

set of the obstacle at some time (using the collision region CR(t) instead of the
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simplified collision region SCR(t)), any points added from Q5(t) for some t would not

be boundary points of the velocity obstacle set. Instead, these candidate boundary

points from Q5 replace boundary segments that lie in the interior of the simplified

VOS, which would take a lot more effort to compute (see Figures 2-2 to 2-4).

To find these candidate points on the exact boundary, first the limits on the

domains of A1,2 and B1,2 would have be computed for |θ| > π (see Section 3.2.1 in

[4]). Then, to find possible boundary points within these domains, the computational

burden would be very similar to that of finding points on Q1,2,3,4; the major hurdles lie

in re-deriving all the equations and conditions using Equation 2.3 and Equation 2.4,

and, in the implementation itself, of combining points and segments together into

a continuous boundary. Tracing the exact curve of the reachable set would imply

that θ no longer uniquely defines a point on C(t) for a given t (SCR(t) is convex,

whereas CR(t) is not; see Figure 2-2), and additional rules would need to be built

into the function that sorts candidate points and segments into an ordering to form

a continuous loop.

Note that, especially in cases for which tf =∞, very rarely (empirically, less than

1% of the time) do any points from Q5 make it onto the final boundary BVOS. As is

the case in Figures 3-5 and 3-6, the candidate points on Q5 tend to end up within

other candidate boundaries formed by points on Q1,2,3,4, and are thus excluded from

BVOS. When no points from Q5 are found on the final boundary, none of the points

of the original collision region omitted in the simplification could have been on the

boundary either, so the VOS found using the simplification is then in fact identical

to what would have been found using the exact collision regions, i.e.,

VOS(t0, tf ) =
⋃

VO|traj(t0, tf ).

While these points from Q5 seldom affect the final VOS, it is nonetheless crucial for

the sake of completeness that the algorithm finds these candidate points before dis-

carding them, for otherwise the proof of collision avoidance would be invalidated. The

simplification made by using Q5 is well suited for serving this role as an intermediate
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step in the proof.

When the VOS is calculated with a finite time horizon, it is fairly common for

the segment Q5(tf ) to appear on BVOS(t0, tf ). In general, these points do not satisfy

Equation 3.9, but all points on C(tf ) are also considered candidate boundary points,

and Q5(tf ) is a component of C(tf ) for any tf < ∞ (see Figure 3-11). When this is

the case, a small part of the boundary of the exact collision region lies on the interior

of the VOS as defined, so

VOS(t0, tf ) ⊃
⋃

VO|traj(t0, tf ),

such that the VOS as defined forms a (very slightly) conservative bound on the single-

velocity trajectories that are safe up to time tf .

3.3 Upper and Lower limits of time window

3.3.1 Lower limit of time window

Just as in the original velocity obstacle formulation [5], as t0 → 0+, the velocity

obstacle set VOS(t0, tf ) extends out to infinity in the direction of the current location

of the physical obstacle (reviewed in Section 2.2). This comes from increasingly higher

speeds required to collide with the obstacle on decreasing time scales, and beyond a

certain point, these velocities are irrelevant since they are beyond the capacities of

the host vehicle; these potential collisions as t → 0 are not physically possible. The

velocity space constraint SVR(t = 0) is undefined, since contact between the vehicles

at this time depends only on the initial conditions, not any input velocity.

As t = 0 cannot be used, a practical approach is to set t0 at some ε > 0 such that

SVR(t0 = ε) lies beyond input velocities on interest. One method is to set the entire

region SVR(ε) beyond some maximum speed vmax that the host vehicle can achieve

(In Figure 3-12, ε is chosen such that the red boundary of SVR(t0 = ε) is outside of

the circle of the host robot’s maximum speed).

This is more easily done by considering the dynamic obstacle without turn-rate
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Figure 3-11: Here, x0 = 4, y0 = −4, ρ = 6.063, r = 1.5, v = 1 as in figure 3-6, but
tf = 14sec. The simplifying segment Q5(tf ) is part of C(tf ), hence the simplification does
indeed affect the final boundary. Without the simplification, the less conservative final
boundary would include a curved segment that lies on the interior of the straight segment.
This curve cannot be solved for using the methods presented in this thesis.
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Figure 3-12: VOS(t0, tf ) computed for obstacle parameters x0 = 4, y0 = −4, ρ = 6.063,
r = 1.5, v = 1. Using the process detailed in Section 3.3.1, t0 = 1.188 was chosen such that
SVR(t0) lies outside of the set of feasible host vehicle velocities.

constraints and with maximum speed v. The collision region (the reachable set of

the obstacle, grown by the collision radius r) associated with a vehicle subject to

fewer dynamic constraints contains the collision region of the more limited vehicle,

since the reachable set of the latter is a subset of the reachable set of the former.

Therefore, if the collision region at time ε of a vehicle moving with arbitrary speeds

≤ v lies entirely outside of the circle of radius vmax, the region SVR(ε) for a vehicle

with a limited turn rate and constant forward speed v that starts at the same location[
x0 y0

]T
also lies outside of this circle.

The reachable set at any time t of a vehicle with only a maximum speed constraint

starting at
[
x0 y0

]T
at t = 0 is simply a disk of radius vt centered on

[
x0 y0

]T
(see

Figure 3-13). The collision region around this reachable set has radius vt + r, so in

velocity space, the set of velocities that would enter this collision region at time t is
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Figure 3-13: Reachable set, collision region, and collision velocities of a moving obstacle
with no turn-rate constraints and a maximum speed of v. If this region in velocity space lies
outside of the circle of radius vmax centered on the origin, then SVR(t) for the dynamically
constrained obstacle also lies outside of the vmax circle.
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a disk of radius v + r
t

centered on 1
t

[
x0 y0

]T
. Thus, the boundary of the collision

region in velocity space is given by the parametric curve

1

t

x0

y0

+ (r + vt)

cosφ

sinφ


for φ ∈ [0, 2π). Therefore, to choose t0 = ε such that this disk is outside of the host

vehicle’s feasible velocities, solve for ε such that

1

ε

∣∣∣∣∣∣
x0

y0

+ (r + vε)

cosφ

sinφ

 ∣∣∣∣∣∣ ≥ vmax ∀φ ∈ [0, 2π].

This yields the formula

ε ≤
√
x2

0 + y2
0 − r

vmax + v
.

3.3.2 Upper limit of time window

For an obstacle moving along a known, linear trajectory, the velocity obstacle cone

converges to an apex at ~vobs as t → ∞ [5]. For the velocity obstacle set described

here, SVR(t → ∞) goes to a circular disk of radius v centered on the origin. This

can be easily derived by taking the limit of Equation 3.10 (noting that as t → ∞,

C(t) = Q1,2(t, θ) since the domain of Q3,4 disappears at t = π/ω):

lim
t→∞

Q2(θ, t) = lim
t→∞

1

t

x0 + ρ(1− cos θ) + (vt− ρθ + r) sin θ

y0 + ρ sin θ + (vt− ρθ + r) cos θ


=

v sin θ

v cos θ


Intuitively, limt→∞ SVR(t) is this circle of radius v because, if the host vehicle

were to drive along any straight trajectory in any direction with a constant speed less

than v, the obstacle could always eventually catch up and collide. This implies that,
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to guarantee avoidance of the dynamic obstacle on the infinite horizon without the

host robot changing its velocity, the host robot must be able to drive faster than the

obstacle.

Choosing a velocity that is not inside of the infinite horizon velocity obstacle set

VOS(t0, tf = ∞) provides the host vehicle with a single-velocity trajectory that will

never enter the collision region of the moving obstacle. The fact that VOS(t0, tf =∞)

is well defined is a very powerful result for infinite horizon safety, which is discussed

rigorously in Chapter 4.
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Chapter 4

Safety Guarantees

4.1 Introduction

As explained in the beginning of Section 3.1, any velocity outside of VOSi(t0, tf ) for a

given obstacle i can be used to generate a single-velocity trajectory that is guaranteed

to avoid any dynamically feasible path of that obstacle, for the duration of the time

window. For multiple obstacles, the constraints are simply combined; a velocity that

is outside of the VOSs of each of the obstacles is guaranteed safe for the duration.

The only remaining problem is that, if tf is set to some finite value τ , there is no

guarantee that this safety can be propagated. For any t′ ≤ τ, the host vehicle would

avoid all collisions, but nothing can be said about the continued existence of safe

trajectories of duration τ − t′ or longer. This is the major problem encountered by

other collision avoidance methods that use finite time horizons τ [9].

However, in this formulation, it is perfectly tractable (Section 3.3.2) and reason-

able (because there is no prediction of obstacle behavior involved) to set tf at ∞,

and this allows the use of a slightly modified version of the concept of invariant safe

states (Section 2.3). As described in [2], these are host vehicle states that

• and can always be propagated back to themselves.

• meet all imposed safety conditions,

In [2], the imposed condition for urban driving is that the vehicle does not contact
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other vehicles if the other vehicles maintain their current trajectory; this thesis deals

with relaxing such an assumption about the dynamic obstacles. Additional safe states

are found as those that can be propagated into some invariant safe state.

4.2 Modified Invariant Safe States

For the scenario described earlier in Section 1.2, once the infinite horizon velocity

obstacle sets are found, any control input ~v ? outside of VOSi(t0,∞) for all obstacles i

can be propagated indefinitely without possibility of collision, simply by definition of

the infinite horizon velocity obstacle. Thus, moving along this trajectory defined

by ~v ? (the dashed arrow in Figure 4-1) can be considered an invariant safe state,

where “state” does not imply a specific coordinate or time, as it might in the classic

definition. Instead, assuming the host robot starts at the origin at t = 0, the “state”

s~v ?(t) for ~v ? is defined as

s~v ?(t) =

[~x(t)− t~v ?]

[~v(t)]

 ,
where ~x(t), ~v(t) are respectively the host vehicle’s position and velocity at time t.

More generally, s~v ?(t1, t) is defined as

s~v ?(t1, t) =

[~x(t)− (~x(t1) + (t− t1)~v ?)]

[~v(t)]

 ,
where t > t1, and t1 is the time of computation of the VOS.

This redefinition allows a single collision-free state to remain time-invariant for t >

t1. Indeed, if the vehicle drives at constant velocity ~v ?, then ~x(t) = ~x(t1) + (t− t1)~v ?,

so

s~v ?(t1, t) =

[0 0
]T

[~v ?]

 ,

64



ds

dt
=

[~v(t)− ~v ?
]

[
d~v(t)
dt

]
 =


[
0 0

]T[
0 0

]T
 .

As stated earlier, being in the invariant safe state s~v ?(t) =
[
[0 0] [~v ?]T

]T
simply

corresponds to the robot moving with the guaranteed safe velocity v ?, and by not

changing its velocity, the robot stays in this state. Note that every time the infinite

horizon velocity obstacle sets are computed, each velocity that lies outside of all the

VOSs defines a new invariant safe state s~v ?(t1, t) that the host robot may choose to

transition into. Intuitively, these invariant safe states are escape paths (with speed

greater than the forward velocity of the obstacle; see Section 3.3.2) that eventually

leave all the obstacles behind the host vehicle.

Alternatively, without restructuring the definition of “state,” there would be no

invariant safe states, since the host robot needs to continue moving along the single-

velocity trajectory to ensure collision avoidance. Nonetheless, all the vehicle configu-

rations along this trajectory are each safe states, since they can all be propagated into

other collision free states by continuing along the trajectory at velocity ~v ?. The above

modification to the definition of “state” is made in order to avoid the awkwardness

of defining safe states without having any invariant safe states to use as a basis.

4.3 Additional Safe States

In addition to the invariant safe states themselves, any vehicle configuration that can

safely make a transition into a invariant safe state is also safe; from any of these safe

configurations, it is always possible to avoid potential collisions simply by making the

transition to an invariant safe state and staying there (i.e., continuing with velocity

~v ?). This means that an arbitrary finite trajectory from t = 0 to t = t1 (traj1 in

Figure 4-1) terminating with the conditions

~x(t1) = ~x0 + ~v ?t1 (4.1)
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Figure 4-1: Different safe trajectories in physical space, velocity obstacles not shown. Let
~v ? be a velocity outside of the infinite horizon VOS calculated at t = 0. The dotted arrow
is the single-velocity escape trajectory associated with ~v ?, which is guaranteed safe on an
infinite time scale. If traj1 terminates at (~x1, t1) with velocity ~v ?, it can be safely continued
at least along traj2. By calculating the shifted velocity obstacle at (~x1, t1), other single
velocity trajectories (like traj3) that also guarantee infinite horizon safety may be found to
continue any partial trajectory ending at (~x1, t1).

and

~v(t1) = ~v ? (4.2)

at some value of t1 ≥ t0, without collisions for t ∈ [0, t1], is guaranteed to have access

to a trajectory that is safe on the interval t ∈ [t1,∞). If t0 in the VOS computation is

set to essentially 0 (using ε as described in Section 3.3.1), ~v ? itself trivially produces

such a trajectory for t ∈ [0, t1], i.e., in Figure 4-1, the dotted black line provides a

safe means of arriving to the blue point at t1. However, various more complicated

solutions, like the dotted green line, may be found as well. Depending on the specific

scenario and host robot dynamics, various means, including forward simulation and

prediction as in [28] and [29], can be used to generate the finite trajectories from t = 0

to t = t1 and check for collisions. The velocity obstacle set does not aid in checking

the safety of this segment.
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Figure 4-2: For a general coordinate ~x1 that is reached by the host robot at time t1, a
time-shifted VOS can be computed for each obstacle that determines the safety of single-
velocity trajectories originating from ~x1 for times t > t1. It is convenient to define a new
time-frame T = t− t1 such at T = 0, that the host robot is at ~x1 and the reachable set of
the obstacle has already grown out of its initial location by t1 seconds. The time-shifted
VOS is computed the same way as detailed in Chapter 3 using these reachable sets for all
T > 0.

4.4 Time-shifted VOSs

Similarly, but more generally, for any finite trajectory that terminates at time t1 at

an arbitrary position ~x1 with velocity ~v1, the terminal location ~x1 is not in contact

with any of the obstacles if it is not in the reachability set SCRi(t1) of any of the

obstacles. If this condition is satisfied, then there might be a safe, infinite horizon

trajectory on the interval t ∈ [t1,∞) if ~v1 lies outside of every time shifted VOS with

the host robot moved to ~x1. That is, assuming the robot gets to ~x1 at t1, one must

determine if continuing indefinitely at ~v1 is guaranteed safe for all later times.

To compute the time-shifted VOS of each obstacle, a new time frame is defined
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using

T = t− t1,

such that T measures the time that has elapsed since the host robot arrived at location

~x1 at time t1, and the goal is to find velocities leaving ~x1 that are safe for T > 0.

Each obstacle is translated by −~x1 such that the coordinates are defined relative to

the new host robot location at T = 0 (see Figure 4-2). In addition, when computing

the reachable sets of the obstacles, any terms T are replaced by T + t1 to account for

the motion of the obstacle that has already occurred prior to T = 0. When converting

these reachability regions defined in physical to velocity space regions, the factor of

1
T

remains unchanged. Applying these changes to the terms in the equations for S(t)

and Q(t) (Equation 2.7, Equation 2.8, Equation 2.11, Equation 2.12, Equation 3.2,

and Equation 3.3) yields the boundaries of the time-shifted simplified collision regions

SCR(T ).

For example, the expression for Q2(θ, t) in Equation 3.10 converts to

Q2(θ, T, ~x1, t1) =
1

T

x0 − x1 + ρ(1− cos θ) + (v(T + t1)− ρθ + r) sin θ

y0 − y1 + ρ sin θ + (v(T + t1)− ρθ + r) cos θ

 , (4.3)

where, as before,
[
x0 y0

]T
are the initial coordinates of the obstacle; with domain

Q2(θ, T, ~x1, t1) : T ∈ [t0, tf ], θ ∈ [0,min(ω(T + t1), π)]

Using the steps given in Section 3.2.1, the necessary condition for boundary points

on Q2(θ, T, ~x1, t1) Equation 3.12 becomes

0 =− 1

T 2
((x0 − x1 + ρ) sin θ + (y0 − y1) cos θ + vt1 + r − ρθ. (4.4)

Similar modifications can be performed for the segments Q1,3,4,5(θ, T, ~x1, t1), and the

necessary conditions for boundary points on each of these segments can be re-derived.

If the velocities obstacle sets are calculated using these modifications, they repre-
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sent all the potentially dangerous single-velocity trajectories that originate from ~x1

at t1, given the current locations of all the obstacles. In an equivalent interpretation

of the time-shifted velocity obstacle sets, these are VOSs formed for the current time

(T = 0) and host vehicle location, but without up to date information of the obstacle

locations; the obstacle state is known for T = −t1 but has since changed.

Any velocity that lies outside of the time-shifted VOS can be executed indefinitely

without the possibility of collision beyond t = t1. Hence, any finite trajectory termi-

nating at an arbitrary ~x1 at t1 can be safely extended if the terminal velocity ~v1 of

this trajectory lies outside of the shifted VOS of each obstacle. Note that the con-

ditions described earlier in Equation 4.1 and Equation 4.2 are a specific case of this

condition; ~v ? is guaranteed to be one, among possibly many others, velocity that is

outside of the VOSs calculated at (~x1, t1). In Figure 4-1, ~v ? gives the safe trajectory

traj2, and other safe trajectories like traj3 may be found using the shifted VOSs.

The time-shifted VOS can be used in on-line planning to account for delays; the

planner can assign a duration of time for computation, use that as t1, and set ~x1 = ~vt1

as the expected propagation, where ~v is the current velocity. Assuming the current

velocity is maintained during planning, this formulation properly handles on-board

computation time and does not compromise guaranteed collision avoidance.

The time-shifted VOS also has potential to be a powerful tool for efficient path

planning while maintaining guaranteed safety; finding safe endpoints of general finite

trajectories allows for much smoother planning compared to picking only straight

trajectories using the various guaranteed safe velocities. This will be discussed in

detail in Chapter 5.
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Chapter 5

Iterative Planning

5.1 Underlying Concepts

A trajectory that satisfies the velocity obstacle set constraint calculated with tf =∞

for all the obstacles can be continued indefinitely without collision. However, if the

goal location does not lie along the current path, or if the goal location is changed,

the robot would never reach the goal without picking a different velocity, and the

trajectory needs to be updated. There is no guarantee that it is possible to reach the

goal safely.

At any point in time, the planner can use the current state information to recom-

pute the VOS of each obstacle. The safety guarantee is that, if the current trajectory

had satisfied the infinite horizon VOS constraints at some previous time, the current

velocity will still lie outside of all the updated VOSs. In addition, if there are other

velocities that satisfy this condition, there may be other feasible trajectories that are

guaranteed safe as well. These may be single-velocity trajectories using a valid ~v ?, or

more complex finite paths whose terminal conditions satisfy either Equation 4.1 and

Equation 4.2 or the more general requirements given by the time-shifted VOSs (Sec-

tion 4.4). Here, feasibility refers to scenario-dependent constraints on the host robot’s

dynamics; the robot may not be able to immediately change its speed and heading to

match the desired new safe velocity (see Section 5.2.2 for a detailed discussion). If a

significant amount of time or displacement is required to make the transition, either
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a finite path that eventually merges onto the new trajectory can be computed and

checked for safety (Section 4.3), or the time-shifted VOS can be used.

Typically, after the VOSs are updated, new safe trajectory will be available, in

addition to the guaranteed safety of the current trajectory. Clearly, for any safe

velocity pointed in the direction of the goal, if the distance to the goal divided by

the speed is less than the time horizon of the VOSs, the host robot will safely reach

the way-point. If there are no such velocities, a safe velocity can be chosen subject

to various heuristics. For example, to choose the trajectory that makes the closest

approach to the desired way-point at some future time, the velocity whose direction

is most closely aligned with the goal should be chosen. Alternatively, candidate safe

velocities can be propagated for the duration of time until the next scheduled re-

plan, and a best velocity can be chosen based on the resulting robot configuration.

For example, the planner could greedily select the propagated location closest to the

goal, or it could also incorporate a measure of how sharply the robot would need

to turn to travel from the propagated location to the desired goal. Other selection

metrics could include measures of control effort.

At any later time, it is always possible to recompute the VOSs and attempt to

improve the trajectory. Re-planning can occur on regular intervals, or it can be

triggered by how well the current plan approaches the goal. A better trajectory may

not exist, and there is no guarantee that the goal can ever be reached, but at least

the current plan can be executed safely and extended indefinitely (if the VOSs were

computed for the infinite time horizon). Therefore, after solving for the velocity

obstacle sets given the initial state of the environment, if there exists at least one

feasible velocity ~v ? outside of all the infinite horizon VOSs, an iterative planner is

guaranteed to never encounter collisions. Note that the safety guarantee does

not depend in any way on the iterative updates, which only help the robot

seek the way-point. Other receding horizon methods ([2, 9]) have not been able to

provide this guarantee for unpredictable obstacles.

This approach is not complete; velocity obstacle sets only return single-velocity

escape trajectories. There may exist a curved path that extracts the host robot from
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a “surrounded” situation or one that brings it to the goal, but the method presented

in this thesis will not find it. However, this method does guarantee that it will never

put the robot in such a surrounded situation if that is not the initial condition.

5.2 Outline of Planners Used in the Simulations

An iterative planner based on the concepts discussed in Section 5.1 was implemented

in simulation for scenarios with various conditions to demonstrate the use of velocity

obstacle sets in avoiding unpredictable, dynamic obstacles. Multiple obstacles are

seeded throughout then environment and propagated in accordance with the assumed

dynamical model. The host vehicle is given a series of way-points it attempts to

reach, if it can do so while avoiding all the obstacles. The planner is provided perfect

knowledge of the obstacles’ model parameters (size, speed, and turn radius) and

current locations and headings such that it can compute the velocity obstacle sets,

but it is given no additional information. On regular intervals, the planner computes

the VOSs of each obstacle and uses a greedy heuristic to choose and immediately

implement a safe, dynamically feasible velocity that brings it towards the next way-

point. The key result of this thesis is that, by computing the infinite horizon

velocity obstacles, the host robot can successfully avoid the obstacles ad

infinitum while attempting the navigate to the way-points. Note that just

reaching the goal is not considered safe; the robot must maintain an open path forward

from there. This allows the simulation to run indefinitely without the robot ever

colliding.

The infinite horizon planner is tested without imposing constraints on the host

vehicle, and then tested again with turn-rate restrictions on the host vehicle, both

cases agreeing with the analytically proven safety guarantee. Then, to examine the

trade-off between long-term safety and short-term goal-seeking and to demonstrate

the capabilities of the VOS formulation as a reactive planner, finite-horizon VOSs

are used in place of the infinite horizon VOSs, and the simulations are re-run using

various horizon lengths for both cases where the host robot has unconstrained or
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constrained dynamics. Finally, in certain applications, the traversable environment

may have enclosing boundaries (walls, or limits of explored terrain), in which case

any non-zero velocity would lead to a collision on the infinite horizon. Various length

finite-horizon planners with no long-term safety guarantees are tested in simulation

for this case and the empirical results are compared.

5.2.1 Implementation Details of the Simulator

This section describes in detail the implementation of the iterative planning algo-

rithms in outlined in Section 5.2.

Basic Parameters In these simulations, six obstacles move with speed 1m/s and

turn at a maximum rate of π/5rad/s, yielding an equivalent minimum turning radius of

ρ ≈ 1.59 m. The host robot has a maximum speed of vmax = 2.5m/s. In the simulations

for which the host robot has a limited turn rate, it may adjust its heading immediately

by up to ∆θ = π/3radians at each planning update. The dynamics are propagated

linearly at intervals of δt = 0.1s while the planner makes updates every ∆t = 1s, so

the limited instantaneous heading adjustment translates into an equivalent turn rate

of between π/3 and 10π/3 rad/s (see Section 5.2.2 for a detailed discussion on how this is

obtained). The host robot and the obstacles are all disks of radius 0.5m, yielding a

collision radius r = 1m. Each simulation runs for a total duration of 800s of virtual

time.

Obstacle behavior To represent all feasible obstacle behavior, obstacle turn rates

are uniformly sampled from their full range of [−ω, ω] every one to two seconds. If

new turn-rates were sampled too often, the trajectories would become noisy – but

mostly straight – lines, which would not present a challenging collision-avoidance

scenario. To keep them clustered in a local area and to sufficiently test the limiting

cases, the obstacles are made to turn at maximum rate whenever they are outside

of a pre-defined 122m2 box (the dashed lines in Figures 5-2-5-10) in at the center of

the environment. For the simulations in which the space is enclosed by walls, the
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walls form a 19.42m2 centered on the origin (in the figures, the walls are the limits

of the viewing window), such that given the above described obstacle behavior, the

walls mark the edge of the obstacles’ reachability. Collisions between obstacles do

not affect their motion so as not to violate the assumed dynamics.

Goal-seeking and collision avoidance for host robot The host robot is re-

peatedly given the way-points (0,−6), (6, 0), (0, 6), and (−6, 0) in sequence, such

that it is continuously led in a counter-clockwise circuit through the region occupied

by the moving obstacles. Whenever the host robot successfully gets within 0.1m of

the current way-point, the next way-point is given to the robot. At each planning

iteration occurring at intervals of ∆T = 1s, the VOS of time horizon τ for each ob-

stacle is computed according to Algorithm 1. The velocities that lie outside of each

V OSi(ε, τ) yield single-velocity trajectories that are guaranteed to be collision-free

with respect to the obstacles for the desired time horizon. If walls are defined, the

velocities are again filtered such that only the those do not reach the walls by time

t = τ are considered safe. Of these safe trajectories, the dynamically feasible ones

are those that are less than vmax in magnitude and, if the host robot is described

with a limited turn-rate, within ∆θ of the previous velocity. Note that the dynamic

constraints of the host robot and the collision avoidance conditions are completely

decoupled; the host robot’s dynamics need not be known to compute the VOSs, so

this collision avoidance algorithm can be used modularly in various scenarios.

Dynamically feasible single-velocity trajectories that are guaranteed collision-free

up to time τ are ranked using a simple heuristic: each candidate safe trajectory is

propagated for a duration of ∆t, and the velocity that brings the robot the closest

to the current way-point is chosen. This greedy, one-step look-ahead approach is

not the time-optimal solution, but in most cases it is a simple approximation that

effectively brings the robot quickly to the goal. As one would intuitively expect, the

shortcomings of this heuristic are most apparent when a sharp turn is required to

reach the way-point. In this thesis, the main focus of the work is about defining

the constraints that guarantee collision avoidance, so improved formulations of more
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effective path planners are left for future work. Such planners would greatly benefit

from allowing general motion primitives that terminate in provably safe single-velocity

trajectories (see Sections 4.3 and 4.4).

As a matter of implementation, candidate safe velocities are found as the boundary

points of each VOS, as well as the intersection of these boundaries with any other

constraints (max host speed, host turn rate limits, collision constraints relative to

wall). These velocities are sorted by the metric described above, and candidates are

then sequentially checked to see that the velocity indeed satisfies all the constraints

(i.e., a boundary point of one VOS does not lie on the interior of a different VOS).

When a valid velocity is found, it is randomly perturbed by small amounts until a

nearly velocity is found that is not right on the boundary and falls on the correct

side of it, such that potential contact with obstacles is completely avoided, whereas

a boundary point may allow the host vehicle to just graze the obstacle.

In the case that no dynamically feasible velocities are guaranteed safe for the

desired horizon τ, the planner implemented here simply selects the dynamically fea-

sible velocity that best satisfies this goal-seeking heuristic, without attempting to

quantify the level of risk for each unsafe trajectory and compute a trade-off with the

expected time-to-goal. Note that this situation is proven to never arise if τ = ∞.

The authors of Ref. [15] explore in detail how this can be done for velocity obstacles

of objects moving along known trajectories. Their method of computing an expected

time-to-collision could be applied to regions within the velocity obstacle set and used

accordingly, but such an implementation has been omitted here, as the primary focus

of this work is guaranteed safety.

Differences for baseline simulation The first set of simulation results presented

in Section 5.3 focuses on the baseline characteristics of using infinite horizon VOSs to

guarantee collision avoidance with no dynamic constraints nor enclosing walls, and

the simulation is implemented with some minor differences in the details described

above. There are only four instead of six obstacles, such that the ensuing behavior

is easier to understand. Instead of being given a fixed sequence of way-points, the
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way-points are generated randomly, with a biased to be close to the current location

of the obstacles in order to create interesting collision avoidance scenarios. The best

safe velocity is selected using a different heuristic: the velocity most closely aligned

with the direction of the goal is chosen such that the resulting trajectory is the one

that gets the closest to the goal. If multiple trajectories point directly to the goal,

the one with speed closest to 1.5m/s is chosen such that the host robot is not always

operating at its dynamical limits.

5.2.2 Nonlinear motion of the host robot

The core concept behind finding velocity obstacle sets for collision avoidance is that

these boundaries in velocity space separate the safe single-velocity trajectories from

the potentially dangerous ones. However, there is no simple modification to adapt it

to immediately determine the safety of general, nonlinear motion of the host robot.

Instead, a nonlinear trajectory would need to be decomposed into general segments

and straight, single-velocity components. Safety with respect to the unpredictable

dynamic obstacle is determined by checking that, at all times, the robot position lies

outside of the simplified collision region SCR(t) (Section 2.1) of each moving obstacle.

For any segment of a general trajectory, this check of physical space constraints can be

done in a straight-forward manner by systematically sampling times in the window of

interest and computing the collisions regions. For single-velocity segments defined for

some interval [t1, t2] (where t2 may be set to∞), this check may be simpler to perform

by computing VOS(t1, t2). Note that if t1 6= 0, the VOS needs to be calculated as a

time-shifted VOS (Section 4.4).

Therefore, to properly handle the non-instantaneous turning of the host robot,

the motion should be broken down as a finite curved segment up to some time t1

terminating at some known location ~x1, followed by a single-velocity trajectory out

to infinity. The safety up to t1 needs to be checked in physical space, and ensuing

safety out to tf =∞ is guaranteed if the final velocity is outside of the shifted VOS

found using t1 and ~x1. This would allow the planner to consider much more general

paths, if there were a more sophisticated algorithm in place to generate and rank such
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Figure 5-1: Nonlinear piece-wise motion of the host robot. If the robot has unlimited turn
rate, the motion can be accurately represented by the dotted black line. If not, the velocity
obstacle set calculations do not directly aid in determining the safety along any curved
segments, which need to be checked in physical space over whatever times they are defined
to be technically correct. Alternatively, in discrete simulation time, the red trajectory is
equivalent to the dotted black trajectory, such that curvature constraints of the red curve
can be translated into angular constraints at the corner in the linear approximation. The de-
facto turn-rate limit of the robot (the green curve) represented by this linear approximation
depends on the re-plan frequency and is less sharp.

trajectories.

The added complexity of this formal approach can be bypassed, however, if the ex-

act nonlinear trajectory of turning for a duration of δt and then proceeding straight

can be closely approximated by an instantaneous change of direction followed by

single-velocity motion (See Figure 5-1, equivalent exact trajectory in red, instanta-

neous change in dotted black). In a discrete-time simulation with time step δt, they

are indeed identical if the instantaneous change in heading ∆θ in the piece-wise lin-

ear trajectory is less than the actual turn rate ωh of the host robot multiplied by

δt. Hence, as described in Section 5.2.1, limiting the choice of new velocities at each

re-plan to those within ∆θ ≤ ωhδt equivalently represents a limited turn rate of the
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host robot that is less than ωmax = ∆θ/δt rad/s, if the actual motion is structured as

quick turns of duration δt followed by straight motion.

Alternatively, without being technically identical, restricting the instantaneous

change of heading to be at most ∆θ can be treated as an equivalent maximum turn

rate of ωmax = ∆θ/∆t rad/s of the host vehicle, where ∆t is the time between successive

re-plans. That is, given that the host vehicle can only change its velocity one re-plan

at a time, the overall rate of angular change of the trajectory over the course of several

re-plans (green curve in Figure 5-1) is limited by the product ∆t∆θ. However, it is not

technically accurate to say that if the host robot has dynamics limited by ωh ≤ ∆θ/∆t

it would be able to follow the piece-wise linear trajectory, which is implemented in

the simulator, down to discrete-time accuracy. Instead, a vehicle with such dynamics

would be able to use the piece-wise linear trajectory as a reference trajectory, where

the actual path traversed would consist of curved segments merging onto the reference

trajectory (see Section 4.3) after ∆t seconds. The safety along the curved segments

would need to be checked by other means, or simply assumed.

For the purposes in this thesis, the distinction between the two interpretations is

not very important. For smoother path planning that is capable of considering more

general escape trajectories than just the single-velocity ones, it will be worthwhile

to have an implementation capable of checking curved segments followed by infinite

horizon guarantees provided by time-shifted VOSs. This would be the best way to

properly handle realistic turn-rate constraints of the host vehicle, but fully imple-

menting such a planner still requires much additional work. Until then, capturing

the qualitative effects of non-instantaneous turning by imposing some maximum ∆θ

is sufficient for commenting on how dynamic limitations affect the safety and the

navigational capabilities of the planner under different conditions.

5.3 Baseline Infinite Horizon Planner

First, the simulation is run using infinite horizon VOSs with no dynamic constraints

nor enclosing walls. The safety guarantee is manifest as the fact that, whenever a
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re-plan occurs, the current velocity is always among the safe velocities found using the

updated VOSs, since the current single-velocity trajectory is guaranteed to remain

obstacle-free for all time. Indeed, this simulation runs for the full duration of 1000s of

virtual time without the robot colliding with any obstacles, and select screen-shots are

shown in the following figures to illustrate the resulting collision avoidance behavior.

5.3.1 Interpretation of Figures

In the ensuing figures, the physical space is shown on the left. The host vehicle is in

blue, the obstacles are in magenta, and the way-point is the red star. The vehicles

leave a trail of their most recent positions. The trail of the host vehicle is reset when

it reaches a way-point and is assigned a new goal. Whenever the obstacles cross the

dashed boundary, they are forced to turn around (explained in Section 5.2.1).

On the right is the velocity space. The infinite horizon VOS of each of the four

obstacles is shaded in. The maximum velocity vmax of the robot is represented by the

black circle. The ideal velocity (directly aligned with the way-point, magnitude equal

to preferred speed) is the green vector; the best new safe velocity is the blue vector;

and the velocity before the re-plan is the dashed black vector. The safety guarantee is

that, until the host vehicle begins traveling along a different velocity, the old velocity

will still lie outside of all the VOSs when the obstacle states are updated. Just for

directional reference, the nearest obstacles are sketched in dashed outlines, though

they cannot be truly represented in velocity space.

5.3.2 Some Sample Snap-shots

Visualizations from various instants in time are presented in Figures 5-2 to 5-10. The

planner makes a scheduled update every ∆t = 1s, but the snap-shots may also fall on

non-integer times since an update is immediately computed whenever the host robot

reaches a way-point.
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Figure 5-2: Initial condition of baseline simulation. Four obstacles are scattered in the
environment, and the host vehicle is given a random way-point. The velocity obstacles
show which velocities could potentially result in collisions if propagated indefinitely. Since
there is no safe velocity directed straight towards the goal, the planner chooses the most-
closely aligned safe velocity. Re-plans in the future may adjust this trajectory to intersect
the desired way-point. Notice that the closest obstacle blocks off the largest section of
velocity space.

5.4 Performance under Various Conditions

This section will examine the changes in avoidance behavior and the trade-offs be-

tween long-term safety guarantees and short-term effectiveness of path planning as

the time-horizon used in the planner is varied under different scenarios. In the first

batch of test scenarios, the environment is not enclosed by walls, and the host robot

can either turn arbitrarily quickly, or it is held to a limited turn-rate. For each case

of host robot dynamics, multiple simulations are run using a spectrum of finite time-

horizons for the VOSs in addition to the infinite horizon formulation. The minimum

finite time-horizon tested is ∆t = 1s, for only avoiding collisions that would occur on

a horizon shorter than the time until the next plan would obviously do a poor job

at avoiding collisions. As the finite time horizons become large enough, there is no

discernible difference between the finite and infinite horizon cases.

A second batch of simulations for which the space is enclosed on all four sides by
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Figure 5-3: At t = 5.5s, a velocity pointed directly towards the goal is guaranteed safe, and
this new velocity is selected.

Figure 5-4: By the next planning iteration, the slightly slower ideal velocity had become
become safe, and the host robot adjusts accordingly. This change comes from the two left-
most obstacles having each turned away from the robot’s intended path while it had been
dynamically feasible for them to turn in the other direction.
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Figure 5-5: At t = 11.3s, a velocity is found that squeezes between the two velocity obstacles
sets towards the left.

Figure 5-6: Two seconds later, the updated VOSs show that this direct path is indeed still
safe, and the actual trajectory of the left-most obstacle has allowed wider margins on the
host robot’s left side while the upper obstacle continues to threaten collision if the host
robot were to turn slightly to the right.
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Figure 5-7: In the few planning iterations before t = 22.7s, the best safe trajectory that the
planner had selected would have brought the robot too far the left of the goal. At t = 22.7s,
the updated VOSs show that there is now a safe trajectory nearly lined up with the goal
that jointly avoids all possible trajectories of both lower obstacles.

Figure 5-8: In the one re-plan between t = 22.7s and t = 24.7s the robot was able to
make one more minor adjustment in its heading (as seen by the slight deflection of the blue
trajectory), lining up directly with the goal.
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Figure 5-9: At t = 26.1s, the new way-point is blocked off by the nearest obstacle, and host
robot must drive around it.

Figure 5-10: At the next update, the planner discovers a clear trajectory towards to goal.
Note that, with limited turn dynamics, this tight turn may not be possible, and the planner
would then continue along the previous velocity as the next best option.
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walls is then analyzed. In these scenarios, it is not possible to form infinite horizon

velocity obstacle sets, since any single velocity trajectory would eventually collide with

a wall, so various finite time horizons are tested and compared for both constrained

and unconstrained host robot dynamics. Note that guaranteed collision avoidance

requires infinite horizon VOS calculations and a non-enclosed environment.

5.4.1 Measurements Taken

Measures of Safety To evaluate the safety of the planner in each condition, the

number of collisions encountered in the span of 1000 seconds of simulation is recorded.

These collisions are either due to planner errors or VOS numerical errors.

• Planner errors These occur when there are no velocities guaranteed safe for

the desired time horizon τ , i.e., the velocity obstacle sets cover all of the dynam-

ically feasible velocities of the host robot. When this occurs, the planner selects

an unsafe velocity that best satisfies the heuristic for way-point navigation (see

Section 5.2.1). These errors are guaranteed to never occur if the time horizon

is set to ∞ and the robot starts in a valid initial condition. Limited vehicle

dynamics do not affect this guarantee because simply continuing at the current

safe velocity is always dynamically feasible.

• VOS numerical errors The circumstantial geometry of the boundary of the

VOS of a certain obstacle may occasionally be problematic for the algorithm

to process. Two boundary points may be too close to cleanly distinguish nu-

merically, or multiple candidate boundary segments may overlap in a very near

parallel manner that makes it problematic to find the overall outer boundary.

In these cases, the VOS is not properly computed, and collisions may result.

Empirically, the VOS calculation fails less than 0.5% of the time, and this rate

can perhaps be reduced with further refinement in the coding of the algorithm.

Errors of this type should be disregarded when evaluating the effectiveness of

the collision avoidance algorithm under various conditions.
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These errors do not always result in actual collisions, since the obstacles may end up

moving along relatively benign trajectory among all its dynamically feasible choices.

Therefore, the error rates and collision counts are recorded separately.

Measures of Effective Path Planning The direct distance between successive

way-points is 6
√

2 ≈ 8.5 meters, so by traveling at the maximum speed and ignoring

all obstacles, the host robot would need≈ 3.4 seconds to travel from way-point to way-

point. Accounting for the collision avoidance constraints in the form of the velocity

obstacle sets forces the host robot to divert from this direct path and interferes with

the goal-seeking process. The average time it actually takes for the robot to reach

the way-point in each simulation is recorded as a measure how effectively of the

path-planner can navigate the way-points while operating within the various imposed

safety constraints.

Empirically, when a way-point is not reached immediately, the host robot typically

needs to circle around the environment before it can make another pass to the same

way-point. It is also fairly common for multiple obstacles to linger in the vicinity of

a way-point such that the robot must wait a significant duration before it is possible

to reach safely approach the goal. These situations give rise to significant outliers in

the time-to-goal data. The standard deviation is be calculated, but the distribution

is not normal, so its characteristics are not summarily represented by the average and

standard deviation alone. Therefore, a distribution of times is also recorded for each

simulation; the fraction of paths that are completed within various multiples of the

direct path time (≈ 3.4s) is recorded.

Infinite Horizon Data In the figures in which these measurements are plotted

(Figures 5-14-5-17 and 5-21-5-24), the infinite horizon simulation is in the cases with-

out walls, and the data for τ =∞ is plotted at some finite value (24 or 30) at the far

right of the x axis.
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5.4.2 Results: No walls, No dynamic constraints

In this batch of tests, like the case in the baseline implementation of Section 5.3, the

environment is not enclosed by walls, and the host vehicle can turn instantaneously

to any new velocity. Figures 5-11 to 5-13 show the changes in the VOS constraints

as the time horizon is increased. On short horizons, only the obstacles in the imme-

diate vicinity of the host robot affect the safety of feasible velocities. The planner

essentially acts as a reactive planner and does not make use of the VOS formulation

to account for the unpredictable future behaviors of the obstacles. Nonetheless, the

VOSs still do accurately represent which velocities are necessary to steer away from

immediate collisions, and as long as the host robot is agile enough to veer away,

collisions can generally be avoided. Short horizon planners could be vulnerable to

becoming gradually surrounded, by the obstacles, but such a pathological situation

did not arise during the simulation. As the horizon is extended, the planner becomes

more sensitive to possible future locations of the obstacles, and would be susceptible

to encountering situations that require a last minute dodging behavior. This increased

awareness of future obstacle trajectories imposes more restrictive limits on what are

considered safe velocities; any velocity deemed safe on a longer horizon is also deemed

safe on a shorter one. Therefore, in general, if the heuristic for selecting velocities

that get to the way-point quickly is effective, as the time horizon is increased, the

average time to goal should rise. After some point, further extending the time horizon

has negligible effects on the shape of the VOSs, so the performance measures should

settle as τ →∞.

Figures 5-14 to 5-17 confirm these trends. With an unlimited turn rate, the host

robot does fine using even just a reactive planner, so there are no errors or collisions on

any time horizon (the VO errors are numerical issues, as explained in Section 5.4.1).

As the time horizon is increased, the average time to goal climbs. There is a minor

peak in Figure 5-16 at τ = 6s, and this may be caused by transients in switching

between two qualitatively different behaviors: reacting to imminent collisions versus

planning more roundabout paths using an essentially infinite horizon. For horizons
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Figure 5-11: Simulation with unconstrained dynamics, no walls, τ = 1s.

Figure 5-12: Simulation with unconstrained dynamics, no walls, τ = 5s.

Figure 5-13: Simulation with unconstrained dynamics, no walls, τ =∞.
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greater longer 10 seconds, the behavior is essentially identical to the infinite horizon

behavior. With an unbounded turn rate, if the host robot misses the way-point, it

can immediately turn around without making a large loop. Therefore, as seen in

Figure 5-17, there are not very many extremely long paths.
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Figure 5-14: Errors: no constraints, no walls

Figure 5-15: Collisions: no constraints, no walls
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Figure 5-16: Average time to goal: no constraints, no walls

Figure 5-17: Distribution of time to goal: no constraints, no walls
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5.4.3 Results: No walls, Dynamic constraints

In this batch of tests, a turn-rate constraint is introduced for the host robot such

that, at each planner update, it may only choose velocities whose angles differ by

at most ∆θ = π/3 from the previous velocity (see section 5.2.2). In Figures 5-18 to

5-20, these constraints are represented by the red bounds (which are bisected by the

previous velocity, the dashed black vector): only velocities from within the wedge

may be chosen as the new velocity.

In these scenarios, the robot is less agile, so reactive motion planning is naturally

less effective. The short-term planner may attempt a direct path towards the way-

point, and along the way, it then discovers a threatening obstacle but not be able

to swerve avoid it in time. Such situations indeed led to multiple collisions for the

1s horizon planner (Figure 5-22), and threatened other collisions that were avoided

only by chance (Figure 5-21). This issue is provably averted only through using the

infinite horizon planner, though in practice, the likelihood of the problem drops off

sharply as longer finite horizons are used. The limited dynamics of the host vehicle

do not affect the infinite horizon safety guarantee.

Just as in the unconstrained case, if the velocity selection heuristic is effective,

shorter planning horizons would generally imply shorter times to goal, since there

are fewer restricted velocities. However, with limited turning dynamics on the host

vehicle, the times are noisier and this trend is less pronounced. Here, the heuristic

will often fail; the vehicle cannot greedily seek the goal and successfully make quick

adjustments along the way, if the trajectory is deflected by an obstacle, the host

vehicle needs to slowly loop back around before its again aligned with the way-point.

Thus, executing a plan that looks deceptively good on a short horizon can be more

costly, and these competing effects give rise to widely scattered data in Figure 5-23.

All together, the times are much longer in this scenario compared to the previous

one. This comes from the fact that, without considering more general safe states

and multi-step paths (see Sections 4.3 and 4.4), the planner will have a lot of trouble

approaching the goal with vehicles on the other side of the way-point, due to the
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Figure 5-18: Simulation with constrained dynamics, no walls, τ = 1s.

Figure 5-19: Simulation with constrained dynamics, no walls, τ = 5s.

Figure 5-20: Simulation with constrained dynamics, no walls, τ =∞.
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fact that the linear trajectory must be continued safely (see Figures 5-25 and 5-26).

In the previous scenario, if the robot misses the way-point for this reason, usually it

can safely immediately double back to reach the goal, but it is unable to do so with

a limited turn-rate. The inability to take such a corrective action causes the much

longer paths (Figures 5-23 and 5-24). This effect would be significantly reduced if the

planner were capable of considering partial trajectories towards the goal that later

along safe infinite trajectories in a different direction; even the dynamically limited

planner would be able to have a higher success rate on the first passes towards the

way-point.
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Figure 5-21: Errors: with constraints, no walls

Figure 5-22: Collisions: with constraints, no walls
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Figure 5-23: Average time to goal: with constraints, no walls

Figure 5-24: Distribution of time to goal with constraints, no walls
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Figure 5-25: Were the planner able to consider more general trajectories, it could find a safe
path that goes directly to the goal with the intention of later merging onto a safe infinite
trajectory pointed towards the right. The inability to consider such a trajectory hampers
both planners, with or without turn-rate constraints.

Figure 5-26: However, without turn rate constraints, the host vehicle would have been able
to turn back immediately to take the green trajectory. In this case, it cannot do so, and it
is often left “pacing” back and forth.
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5.4.4 Results: Walls, No dynamic constraints

In this batch of tests, the environment is enclosed by walls (at the limit of the viewing

window of the left sides of Figures 5-27 to 5-29), and the host vehicle can turn

instantaneously to any new velocity. The velocities that would result in a collision

with the wall at time t = τ are represented by the red boxes; velocities outside of

the box are not τ -safe and are not chosen by the planner. Note that, with multiple

obstacles, the required conditions to be able to guarantee collision avoidance are

quite complex. In a pathological scenario, depending on the size of the room and the

relative dynamics of the vehicles, it may be possible for the obstacles to collectively

herd the host vehicle into a corner such that collision is inevitable. This situation

does not arise in simulation.

On an infinite time horizon, any non-zero velocity would lead to a collision with

a wall, so the infinite-horizon planner is not considered here. For short time hori-

zons, unless the host vehicle is very close to a wall, the reactive planner is essentially

unaffected. As the time horizon is increased, avoiding the walls becomes an increas-

ingly restrictive requirement that essentially limits the host vehicle to lower and lower

speeds. This effect can be seen in the left halves of Figures 5-32 and 5-33. Meanwhile,

increasing the time horizon also drives each velocity obstacle set towards cover the

entire unit circle (as explained in Section 3.3.2). Past roughly τ = 10, all the veloc-

ities within the red box imposed by the walls are usually covered by the VOSs such

that, more often than not, the planner fails to find any single-velocity trajectories

that are safe for duration τ (Figure 5-30).

As explained in Section 5.2.1, when this occurs, the planner is allowed to select

an arbitrary velocity, since there is no way to properly satisfy the safety constraint.

By τ = 16, the error rate reaches 100% and the host robot is driving blindly; it heads

straight for the way-point and often comes in contact with the obstacles (Figure 5-31.

This planner’s performance may be treated as the “control” case where nothing is

done.

These results show that, when operating in an enclosed environment, it does not
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Figure 5-27: Simulation with unconstrained dynamics, with walls, τ = 1s.

Figure 5-28: Simulation with unconstrained dynamics, with walls, τ = 5s.

Figure 5-29: Simulation with unconstrained dynamics, with walls, τ = 10s.
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make sense to use long time horizons, since no single-velocity trajectory stays safe very

long. With agile dynamics, short term planners can still be effectively implemented

to reactively dodge obstacles while avoiding swerving into the wall.
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Figure 5-30: Errors: no constraints, with walls

Figure 5-31: Collisions: no constraints, with walls
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Figure 5-32: Average time to goal: no constraints, with walls

Figure 5-33: Distribution of time to goal: no constraints, with walls
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5.4.5 Results: Walls, Dynamic constraints

In this batch of tests, the environment is enclosed by walls, and the host vehicle has

a limited turn rate. In Figures 5-34 to 5-36, valid velocities must lie inside both the

wedge defined by the limited dynamics and the box defined by the walls.

As one would expect, this batch of simulation results is a combination of the

previous two cases. Once the time horizon gets too long, there are no safe trajectories,

and the vehicle reverts to driving without collision avoidance. This transition time

horizon occurs a little earlier than it did without dynamic constraints, since the added

angular restriction increases the likelihood that no safe choices are available (as is the

case in Figure 5-36). Before the transition occurs, the turn-rate restricted planner is

not nearly as effective as the unconstrained one, both in terms of avoiding collisions

(Figure 5-37) and in terms of planning efficient paths to the way-points (Figure 5-39).

At τ = 8s, the restricted planner is on average faster, but this is due to the switch in

behavior occurring earlier at τ = 6s.
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Figure 5-34: Simulation with constrained dynamics, with walls, τ = 1s.

Figure 5-35: Simulation with constrained dynamics, with walls, τ = 5s.

Figure 5-36: Simulation with constrained dynamics, with walls, τ = 10s.
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Figure 5-37: Errors: with constraints, with walls

Figure 5-38: Collisions: with constraints, with walls
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Figure 5-39: Average time to goal: with constraints, with walls

Figure 5-40: Distribution of time to goal: with constraints, with walls
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Chapter 6

Conclusions

The objective of this thesis is to develop a framework for guaranteeing infinite horizon

collision avoidance of unpredictable, dynamically constrained moving obstacles. This

goal is achieved by converting the reachable sets of the unpredictable obstacles into

velocity space constraints, whose union over a window of time defines the velocity

obstacle set. As the upper limit of the time window is extended to infinity, this velocity

obstacle set can be used to find safe, invariant single-velocity escape trajectories that

can be used in a receding horizon setting to provide guaranteed safety.

6.1 Thesis Summary

The objective of this thesis is introduced and motivated in Chapter 1. In better struc-

tured environments, invariant safe states are often used as a cornerstone in proving

safety in receding horizon settings, but such states have been difficult to define in

the presence of external agents with unpredictable behavior. Meanwhile, velocity

obstacles are widely used to concisely represent conditions for guaranteed avoidance

of predictable obstacles. However, these approaches are heavily dependent on hav-

ing accurate information about the obstacles’ future locations, which is typically an

invalid assumption. The algorithm developed in this thesis does not require such an

assumption, and uses the velocity obstacle concept to define invariant safety in veloc-

ity space, thereby successfully guaranteeing infinite horizon safety in this challenging
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setting.

In Chapter 2, parametric equations are found to describe the boundaries of simpli-

fied collision regions that enclose all potentially dangerous locations with respect to

each obstacle as a function of time. In Chapter 3, these collision regions are mapped

into velocity space, and the union of the resulting simplified velocity regions over a

time interval defines the velocity obstacle set. Velocities that are not within the veloc-

ity obstacle set can be safely propagated along single-velocity trajectories, avoiding

all potential collision locations for the duration of the interval. It is shown that the

velocity obstacle set can be legitimately defined for an open time interval that extends

to +∞.

Thus, as laid out in Chapter 4, the infinite horizon velocity obstacle set can

be used to define invariant safe states with respect to the unpredictable dynamic

obstacles in the form of single-velocity infinite trajectories. These safe velocities can

be immediately used as the raw building blocks of a rudimentary iterative planner with

infinite horizon guarantees, or they can be further refined to define more general safe

states that would serve as the endpoints of arbitrary trajectories which could then

be used in more advanced iterative planners that also preserve guaranteed infinite

horizon collision avoidance.

Finally, the performance of iterative planners using velocity obstacle sets of var-

ious time horizons are presented in Chapter 5. Only the infinite horizon planner is

guaranteed safe, but simulation results show that, if the host robot has sufficient

mobility, short horizon velocity obstacles can be used in planners that essentially use

reactive collision avoidance. Such planners also tend to be more successful in finding

direct paths to the goal. Furthermore, they can be used in confined environments in

which long horizon planners are invalid. However, the short horizon planners exhibit

non-zero error rates, and are notably less effective and more risky when the host

robot’s dynamics are limited. The simulation results also suggest that performance

in all cases can be drastically improved with generalized safe states that would allow

for more intelligent trajectory construction.
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6.2 Future work

The concept of Velocity Obstacle Sets and the resulting path planning algorithm

can be expanded and improved in several directions with additional research. All

the derivations presented in this thesis apply to obstacles with assumed unicycle

dynamics, i.e., the obstacles move with constant forward speed and have a bounded

turn-rate. Additional work can be done to extend the result to obstacles defined by a

different set of dynamics. The reachable set for objects with a maximum speed instead

of a single constant speed should look quite similar to the reachable sets discussed

here, so an extension to cover this more general case may not be too difficult to derive.

It may also be worthwhile to consider the problem more carefully from the parallel

perspective of inevitable collision states (Section 2.3.1).

In computing the boundary of the velocity obstacle set, the process of combining

various candidate points together into a continuous curve is not yet completely robust.

It relies heavily on basic functions that check for intersections between arbitrary line

segments, but this procedure can break down when the input line segments extremely

close and are nearly end to end, parallel, or just barely overlapping. In the current

implementation, these issues crucially interfere with the computation of the boundary

in about 0.3% of the attempted computations. A careful review of this process or

an attempt to find an alternative means of processing the candidate boundary points

may reduce or eliminate this numerical issue.

Furthermore, in implementation, this is the most computationally intensive step.

It can require up to half a second (though on average much less) to process a boundary

of a few hundred points on a desktop computer, whereas all the other steps combined

require a fraction of that time. Conceptually, velocity obstacle sets are perfectly

suited for use in real-time on-board planning algorithms, so for this purpose as well,

improving the above described process would be a worthy pursuit.

Finally, Chapter 4 lays out the process for finding potential generalized safe states

using time-shifted velocity obstacle sets. These would allow iterative planners to

properly handle the unavoidable host robot non-linearities of turning, and to create
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far more effective plans using finite trajectories terminating in safe states that have

infinite horizon safe solutions, as discussed in Chapter 5. The implementation of an

algorithm for computing the boundary of the time-shifted velocity obstacle sets would

therefore be a useful future project.
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